

Graduate Program Catalog 2019-2020

Table of Contents

College of Business and Economics	3
Master of Professional Accounting	
Master of Business Administration	
Doctor of Business Administration	8
College of Education	10
Department of Curriculum & Instruction	10
Master of Education	
Master of Educational Innovation	12
College of Engineering	16
Department of Architectural Engineering	16
Master of Science in Architectural Engineering	
Doctor of Philosophy (PhD) Concentration: Architectural Engineering	18
Department of Chemical & Petroleum Engineering	20
Master of Science in Chemical Engineering	20
Master of Science in Petroleum Engineering	
Doctor of Philosophy (PhD) Concentration: Chemical Engineering	
Doctor of Philosophy (PhD) Concentration: Petroleum Engineering	26
Department of Civil & Environmental Engineering	28
Master of Science in Civil Engineering	
Master of Science in Water Resources	
Doctor of Philosophy (PhD) Concentration: Civil Engineering	
Doctor of Philosophy (PhD) Concentration: Water Resources	
Department of Electrical Engineering	
Master of Science in Electrical Engineering	
Doctor of Philosophy (PhD) Concentration: Electrical Engineering	
Department of Mechanical	
Master of Engineering Management	
Master of Science in Mechanical Engineering	
Doctor of Philosophy (PhD) Concentration: Mechanical Engineering	48
College of Food and Agriculture	50
Department of Food, Nutrition and Health	50
Master of Science in Food Science	
Master of Science in Human Nutrition	52
Doctor of Philosophy (PhD) Concentration: Food Science	
Doctor of Philosophy (PhD) Concentration: Nutritional Sciences	56
Department of Integrative Agriculture	58
Master of Science in Horticulture	58
Doctor of Philosophy (PhD) Concentration: Horticultural Science	61
Department of Veterinary Medicine	63
Doctor of Philosophy (PhD) Concentration: Animal Science	
College of Humanities and Social Sciences	65
CONST OF EENHOUSE WINE DOUME DOUBLED	•••••••••••••••••••••••••••••••••••••••

Department of Cognitive Sciences	
Department of Geography and Urban Sustainability	
Master of Science in Remote Sensing and Geographic Information Systems	
Department of Government and Society	
Master of Governance and Public Policy	69
Department of Social Wellbeing Master of Social Work	
College of Information Technology	73
Department of Information Systems and Security	73
Master of Science in Information Security	
Master of Science in Information Technology Management	
Doctor of Philosophy (PhD) Concentration: Information Security	
• • •	
Department of Computer Science and Software Engineering	
Master of Science in Software Engineering	
Doctor of Philosophy (PhD) Concentration: Computer Science	
Department of Computer and Network Engineering	
Doctor of Philosophy (PhD) Concentration: Network Engineering	
Doctor of Philosophy (PhD) Concentration: Computer Engineering	89
College of Law	90
Doctor of Philosophy in Law	
Department of Public Law	
Master of Public Law	
Department of Private Law	
Master of Private Law	95
College of Medicine	97
Master of Medical Sciences.	
Master of Public Health	
Doctor of Philosophy (PhD) Concentration: Biomedical Sciences	
Doctor of Philosophy (PhD) Concentration: Public Health and Occupational Health	103
College of Science	105
Department of Biology	105
Master of Science in Environmental Sciences	
Master of Science in Molecular Biology and Biotechnology	
Doctor of Philosophy (PhD) Concentration: Cellular and Molecular Biology	
Doctor of Philosophy (PhD) Concentration: Ecology and Environmental Sciences	113
Department of Chemistry	115
Master of Science in Chemistry	
Doctor of Philosophy (PhD) Concentration: Chemistry	117
Department of Geology	110
Doctor of Philosophy (PhD) Concentration: Geosciences	
Department of Mathematical Sciences	121
Master of Science in Mathematics	
Doctor of Philosophy (PhD) Concentration: Mathematics	
Department of Physics	
Master of Science in Physics	
Doctor of Philosophy (PhD) Concentration: Physics	

College of Business and Economics

Master of Professional Accounting

Description

The MPA is the first AACSB-Accredited Accounting program in the GCC and MENA region. It caters to practicing accountants and managers who have chosen the professional path, and who would like to further their education with a post-graduate degree in accounting. The program covers much wider areas of accounting than any of the other professional accounting certifications that tend to be narrowly specialized. In addition, it develops personal and business competencies (technical and non-technical) of graduates and provides them with an excellent foundation for successful professional careers. The degree will also be a natural route to a Doctorate of Business Administration (DBA).

Program Objectives

- 1. Communicate effectively in a professional context.
- 2. Think critically in relation to the analysis and solution of advanced accounting problems.
- 3. Work individually as well as contribute positively to the functioning of teams as members and leaders.
- 4. Ethically and socially responsible when making accounting-related decisions.
- 5. Demonstrate advanced specialized knowledge in accounting and cognate fields when appropriate.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate a highly developed professional oral presentation of information, criticizing substantively complex matters in accounting accompanied by appropriate technology.
- 2. Demonstrate abilities to communicate effectively in writing, using information technology to the production of highly developed professional written materials on substantively complex matters in accounting.
- 3. Apply advanced technologies and techniques (qualitative/quantitative) to the collection and analysis of financial and non-financial information and deriving appropriate decisions in various accounting fields.
- 4. Critically interpret information, through accurate identification of accounting complex problems, and suggestion of accounting-based innovative solutions.
- 5. Demonstrate autonomy, responsibility, and creativity in planning and executing major projects in their work.
- 6. Demonstrate ability to work in teams, showing leadership and direction, appropriate to complex accounting environment settings.
- 7. Apply professional standards and codes of conduct at national and international levels.
- 8. Relate complex ethical issues consistently, reflecting social responsibility, and leading to informed, fair and valid accounting-related decisions.
- 9. Demonstrate a comprehensive advanced knowledge of key concepts across the breadth of accounting topics.
- 10. Assess contemporary issues in accounting through synthesizing knowledge from accounting and cognate fields when appropriate.

Total Credit Hours: 36

Degree Requirements:

Professional Accounting

Profession	nal Accour	nting	
Required	Courses		
			(Required Credit Hours:24)
ACCT	600	Advanced Financial Accounting	3
ACCT	615	Advanced Management Accounting	3
ACCT	620	Auditing, Accountability and Assurance Services	3
ACCT	625	Corporate Governance, Business Ethics and Control	1 3
ACCT	630	Financial Accounting Standards, Theory and Policy	3
ACCT	635	Financial Statements Analysis	3
ACCT	640	Management Control Systems	3
ACCT	645	Seminar on Applied Research in Accounting	3
Elective	Courses		
			(Required Credit Hours:24)
ACCT	661	Accounting in Special Contexts	3
ACCT	662	Risk-based Internal Auditing	3
ACCT	663	Accounting for Islamic Financial Institutions	3
ACCT	664	Legal Environment and Taxation	3
ACCT	665	Strategic Management Accounting	3
ACCT	666	Selected Topics in Financial Reporting	3
FINC	610	Financial Management	3
			Course Credits
Bridge Co			
Students	whose fir	est degree is not accounting	(D 1 C 1', 11 12)
A COT	500		(Required Credit Hours:12)
ACCT	500	Elements of Accounting and Finance	3
ACCT	505	Financial and Corporate Reporting	3
ACCT	510	Management and Cost Accounting	3
MGMT	510	Business Environment	3

Master of Business Administration

Description

The MBA experience at UAE University emphasizes leadership, innovation, and entrepreneurial creativity. During four semesters of courses, MBA students are guided through a progression of thoughts and shared experience that prepares them for confident, competent business leadership in and beyond the UAE business environment and provides the business community with high quality graduates who are capable of becoming the business leaders of the UAE and beyond.

Program Objectives

- 1. Advanced specialized knowledge and critical understanding in business administration and at the interface between related fields.
- 2. Highly developed communication skills, in a professional context, to explain and | or critique substantively complex matters.
- 3. Apply critical thinking skills to the analysis and solution of complex business problems.
- 4. Work effectively as individuals and contribute positively to complex groups as members and leaders.
- 5. Ethical and social commitment at the local and global levels.

Program Learning Outcomes

- 1. Demonstrate an advanced comprehensive knowledge of conventional and innovative concepts and principles across the breadth of business administration issues.
- 2. Demonstrate the ability to professionally apply business administration knowledge in practical settings.
- 3. Communicate in writing, using the appropriate information technology where appropriate, and to produce highly developed professional quality business documents on substantively complex matters in business administration.
- 4. Deliver a highly developed professional quality presentation, expressing a comprehensive internalized personal worldview on substantively complex matters in business administration accompanied by appropriate technology.
- 5. Identify appropriate sources of information and use appropriate analytical techniques in a systematic way that leads to integrate knowledge from different business administration related fields and use highly developed cognitive skills to think critically and creatively.
- 6. Demonstrate advanced problem solving skills by identifying a business complex problem, generating and comparing alternative strategic approaches to develop innovative solutions with intellectual independence.
- 7. Demonstrate autonomy, responsibility and continuous self-development in planning and executing a major project at their work places.
- 8. Demonstrate teamwork, coordination, and leadership abilities in a complex strategic business environment setting involving multiple groups and governance processes
- 9. Lead, contribute and implement ethical standards in a consistent and sensitive way that leads to informed, fair and valid decisions.
- 10. Analyze business administration issues, reflect ethical engagement, civic and social responsibility on socio cultural norms and relationships, and act to transform them.

 Evnlaration			Course Credits
Evaloration			
	n Term (Courses	
Required (Courses		(D. 1.10 11.11 0)
			(Required Credit Hours:9)
ACCT	601	Accounting for Senior Managers	3
ECON	605	UAE in the Global Business Environment	3
STAT	640	Statistics & Quantitative Analysis	3
			Course Credits
Elaboration	n Term (Courses I	
Required (Courses		
			(Required Credit Hours:9)
MIST	610	Information Systems in Business	3
MKTG	605	Marketing Management in an E-Age	3
FINC	610	Financial Management	3
			Course Credits
Elaboration	n Term (Courses II	
Required (Courses		
			(Required Credit Hours:9)
ECON	651	Managerial Economics	3
MGMT	650	Global Operations Management in the Service Envir	ronment 3
MGMT	610	Strategic Human Resources Management	3
			Course Credits
Application	n Term C	Courses	
Required (Courses		
			(Required Credit Hours:9)
MGMT	620	Entrepreneurship & Innovation	3
MGMT	630	Business Ethics & Corporate Governance	3
MGMT	660	Strategic Management in a Dynamic Environment	3
			Course Credits

			(Required Credit Hours:12)
ACCT	610	Accounting Analysis & Governance	3
ACCT	611	Accounting for Strategic Decisions	3
ECON	610	HR & Personnel Economics	3
FINC	640	Advanced Corporate Finance	3
FINC	650	International Finance & Banking	3
FINC	660	Investment & Portfolio Management	3
FINC	670	Advanced Risk Management	3
FINC	680	Islamic Finance & Financial Institutions	3
GBUS	680	Business Research	3
MGMT	621	Leadership & Organizational Behavior	3
MGMT	622	Staffing Organizations	3
MGMT	623	Performance and Rewards Management	3
MGMT	624	HR Development in UAE Context	3
MGMT	691	Total Quality Management	3
MGMT	692	Organizational Excellence Modeling	3
MGMT	693	International Business Management	3
MGMT	694	Organizational PM & Benchmark	3
MIST	630	Strategic IS Management	3
MIST	640	Business Intelligence & BPM	3
MIST	650	E-Business: Technology, Strategies & Applications	3
MIST	660	Enterprise IS	3
MKTG	610	Contemporary Issues in Customer Behavior	3

Doctor of Business Administration

Description

The DBA is a four-year blended part-time program and is structured in two stages. Stage One consists of two years of course work that covers research philosophies, qualitative and quantitative research methods, research in support of business functions, literature review & critique, and human factors and social responsibility. Stage Two lasts two years and comprises the DBA thesis. At this stage the formal teaching aspect of the program ends and students are expected to use the knowledge gained from Stage One to undertake a research investigation that represents an original contribution to professional thinking and practice and has high academic merit. DBA candidates often tackle issues of real importance to their own organizations, thus delivering high-utility outcomes and enjoying the rewards of seeing their solutions beneficially implemented. During this period, the student's work will be overseen by a Thesis Committee. The program is completed after successful submission and defense of the dissertation.

Program Objectives

- 1. Enabling senior managers to enhance their professional practice and contribute state-of-the-art knowledge in their chosen area of study.
- 2. Producing research oriented professionals with advanced capabilities in leadership and change management.
- 3. Allowing graduates to take back to their organizations increased understanding and conceptual thinking in business management at the highest level.
- 4. Enhancing competitive advantage for the executives and their organizations, by participating in discussions with academics and practitioners at the cutting edge of their fields.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Develop oral presentations to communicate effectively and without guidance, using technologies to support the oral presentation of information where needed to academic and professional peers.
- 2. Write effectively to communicate highly complex and diverse matters to expert audiences.
- 3. Apply a range of mastered skills and techniques including synthesis, evaluation, planning and reflection, required to critically extend and redefine professional practice and knowledge.
- 4. Apply advanced skills in developing innovative solutions to critical problems using expert skills, demonstrating intellectual independence.
- 5. Act with authority, creativity, autonomy, independence, scholarly and professional integrity.
- 6. Demonstrate abilities associated with professional leadership of peer groups and teams.
- 7. Assess consistently and sensitively manage diverse ethical issues in highly complex contexts and make fair judgments.
- 8. Examine the complex social and cultural contexts of leadership.
- 9. Evaluate the state of research and practice in a business field and highlight possible ways to contribute to that field.
- 10. Create new knowledge in the field, through independent research, innovative and creative practical solutions to a challenging business problem through conceptualizing, designing, implementing, and adapting research processes in complex contexts.

Total Credit Hours: 48

Course Credits

Program Courses

Required Courses			
			(Required Credit Hours:48)
DBA	900	The Philosophy of Social Research	1.5
DBA	901	Qualitative Research Methods	
DBA	902	Quantitative Research Methods	
DBA	903	Literature Review and Critique	1.5
DBA	904	Research in Support Business Functions	7.5
DBA	905	Introduction to Business Research	1.5
DBA	906	Human Factors & Social Responsibility	1.5
DBA	907	Research Elective	1.5
DBA	908	Dissertation-Research Proposal	6
DBA	909	Dissertation Research Part 1	6
DBA	910	Dissertation Research Part 2	12

College of Education

Department of Curriculum & Instruction

Master of Education

Description

The Master of Education Program at the United Arab Emirates University is practice oriented with the primary focus of enhancing the knowledge, skills, and dispositions of graduate students. The program is designed to cater for the needs of school teachers, principals, and other school professionals who are eager to pursue graduate studies to improve their performances. It focuses on preparing leaders who will engage in school reform through curriculum development, school decision-making, and community outreach. The program is based on best international standards which will help in facilitating the continuous improvement of education in the United Arab Emirates. The Master's degree program offers three tracks: Educational Leadership, Special Education and Curriculum and Instruction (English, Arabic, Islamic Studies, Mathematics, Science and Social Studies). UAEU College of Education is considered a pioneer in the Middle East in Teacher Education preparation, demonstrated by its attainment of international recognition from the Center for Quality Assurance in International Education (CQAIE) in collaboration with the National Council for Accreditation of Teacher Education (NCATE), in 2005 and 2010 respectively.

Program Objectives

- 1. Acquire advanced knowledge of educational theory, research, and skills related to the area of specialization.
- 2. Enhance ability to incorporate theory and research into practice related to the area of specialization.
- 3. Become reflective practitioners within the area of specialization.
- 4. Become an educational leader and promotes the success of all students by advocating, nurturing, and sustaining a school culture and instructional program conducive to student learning.
- 5. Enhance ability to use problem solving skills and critical thinking abilities to develop, implement, and evaluate collaborative teaching and learning activities.

Program Learning Outcomes

- 1. Apply advanced knowledge and skills necessary in their area of specialization.
- 2. Create a responsive learning environment in which equal treatment, fairness, and respect for diversity are sustained.
- 3. Collaborate with stakeholders to improve programs, services, and outcomes for students and their families.
- 4. Use quantitative and qualitative research that enhance teaching and learning practices and/or school operations.
- 5. Demonstrate leadership abilities in their profession.
- 6. Integrate ICT (Information and Communication Technology) into teaching and learning and/or school operations.
- 7. Use effective communication skills to manage the complexities of teaching for learning in all educational settings.

		(Required Cro	edit Hours:6)
CURR	612E	Advanced Teaching Methods / Eng I	3
CURR	612M	Advanced Teaching Methods / Math I	3
CURR	612S	Advanced Teaching Methods / Science I	3
CURR	622E	Advanced Teaching Methods / Eng II	3
CURR	622M	Advanced Teaching Methods / Math II	3
CURR	622S	Advanced Teaching Methods / Sc II	3
Education	nal Leaders	ship Track	
Required	l Courses		
		(Required Cred	lit Hours:21)
FOED	6400 *	Thesis	3
FOED	6401	Thesis Proposal Dev Seminar I	1
FOED	6402	Thesis Proposal Dev Seminar II	1
FOED	6403	Thesis Proposal Dev Seminar III	1
FOED	6421	Personnel Administration & Staff Development	3
FOED	6422	School Finance & Resource Management	3
FOED	6423	Professional & Cultural Issues in Education	3
FOED	6424	Educational Supervision	3
FOED	6425	School Leadership	3
		* Min CH:0 to Max CH:3	
Special E	ducation T	rack	
Required	l Courses		
		(Required Cred	lit Hours:21)
SPED	6321	Advanced Assessment in Special Education	3
SPED	6322	Characteristics & Teaching Techniques for Individuals	3
SPED	6323	Advanced Collaboration in Special Education	3
SPED	624	Inclusive Learning Environment	3
SPED	6325	Curriculum Modifications for Exceptional Individuals	3
SPED	6400	Thesis	3
SPED	6401	Thesis Proposal Dev Seminar I	1
SPED	6402	Thesis Proposal Dev Seminar II	1
SPED	6403	Thesis Proposal Dev Seminar III	1

Description

The Master of Educational Innovation program aims to prepare teachers and leaders to be innovative in their teaching and school leadership practices. The program does not only focus on helping students acquire new knowledge in teaching and school leadership, but also on enhancing learners' skills through teamwork, collaborative learning, and linking theory to practice. In addition, the program provides learners with new frameworks and thinking patterns that cherish innovation and acceptance of change to keep pace with developments in education. Finally, the program allows students to focus on scientific research skills and use them to solve issues and problems that they might face in their workplaces in new and innovative ways. Arabic is the main language of instruction in this program. The Master of Educational Innovation Program comes as a result of collaboration between the UAE University represented by the College of Education and the Hamdan Bin Rashid Al Maktoum Foundation for outstanding educational performance. The Foundation fully sponsors a minimum of 10 students annually to join this program. A noteworthy point is that this program is also open to applicants from outside the Foundation. The Master of Educational Innovation offers two concentrations of study: Innovation in School Leadership and Innovation in Teaching. The program is a 30 credit hour program where students study 10 courses over the period of around 18 months. The total fees of the program, excluding the 200AED application fees, is 72000AED, and for the course is 7200AED. The Master of Educational Innovation program is delivered in a face-to-face format with classes held on Wednesday or Thursday afternoon (from around 4:00 - 7:00 pm) and on Saturdays all day (from 9:00 am - 4:00 pm). The program is offered at Hamdan bin Rashid Al Maktoum Center for Giftedness and Innovation, Al Beda'a, Dubai.

Program Objectives

- 1. Support distinguished teachers and educational leaders across the United Arab Emirates.
- 2. Develop teachers and educational leaders' skills and abilities.
- 3. Supply the educational field with outstanding national force that can contribute to the prosperity and development of the society.

Program Learning Outcomes

- 1. Establish a national network of best practice related to innovation
- 2. Critique innovational educational theories and practices.
- 3. Design innovational learning programs to meet diverse learners' needs.
- 4. Create innovative projects to improve school performance.
- 5. Conduct innovative research projects to improve educational practices.

Degree R	equiremen	nts	
Required	Courses		
		(R	equired Credit Hours:9)
CURR	651	Introduction to Educational Research_AR	3
FOED	652	Leading Schools & Communities_AR	3
SPED	653	Human Development & Individual Differences	3
			Course Credits
Elective (Courses		
Student s	should sel	ect one course from the list	
		(R	equired Credit Hours:3)
CURR	654	Current Issues in Teaching and Learning_AR	3
FOED	655	International Perspectives on Educational Leadership	3
SPED	656	Inclusive Learning Environment_AR	3
			Course Credits
Innovatio	n in Teach	ning Concentration	
Required	Courses		
		(Red	quired Credit Hours:18)
CURR	661	Smart Classrooms	3
CURR	662	Classroom Assessment & Program Evaluation	3
CURR	663	Artificial Intelligence Applications in Education_AR	3
CURR	664	Teaching for Thinking_AR	3
CURR	665	Professional Portfolio Development 1_AR	3
CURR	666	Professional Portfolio Development 2_AR	3
			Course Credits
Innovatio	n in Schoo	ol Leadership Concentration	
Required	Courses		
		(Red	quired Credit Hours:18)
FOED	661	Management of Distinguished Institutions_AR	3
FOED	662	Leading School Change_AR	3
FOED	663	Managing Student Services	3
FOED	664	Evaluation & Modern Supervision	3
FOED	665	Professional Portfolio Development 1_AR	3
	_		

College of Engineering

Department of Architectural Engineering

Master of Science in Architectural Engineering

Description

The Architectural Engineering Department offers a Master of Science (MSc) degree in Architectural Engineering for students with interests in the design, construction and operation of high performing built environment. The MSc degree prepares students for specialized roles in professional practice as well as for advanced study at the doctoral level. The program includes rigorous architecture engineering course work on topics related to building science, engineering systems, sustainable development and high-performance design at various scales of the built environment. The program culminates in either a research-based project or a thesis. Applicants are expected to have undergraduate architectural or architectural engineering backgrounds, either with a BSc degree in Architectural Engineering from UAE University or equivalent in a closely related area.

Program Objectives

- 1. Develop meaningful research on interactions between buildings and the surrounding environment at the local, national, and regional levels.
- 2. Provide research and professional training necessary for graduates to advance and move into higher professional or academic functions.
- 3. Maintain high international academic standards in research and professional students' learning outcomes.
- 4. Promote the collaboration between the Architectural Engineering research and graduate studies and the government and industrial sectors nationally and internationally.

Program Learning Outcomes

- 1. Apply advanced research techniques and methods to the analysis and solution of engineering problems.
- 2. Demonstrate advanced knowledge sufficient to analyze complex environmental issues related to building and urban systems.
- 3. Develop comprehensive engineering systems, highly specialized components, or appropriate processes for built environment.
- 4. Apply advanced knowledge in a specialized and emerging area in high performance built environment.
- 5. Develop communication skills to present, explain and criticize highly complex issues.
- 6. Evaluate engineering systems in high performance built environment according to relevant regulations and codes.
- 7. Evaluate knowledge of contemporary professional practice in high performance built environment.

Architectural Engineering (15 CH for thesis and 18 for non-thesis)

		d to for non-enesis)	
Required	Courses		
			(Required Credit Hours:15)
ARCH	600	Building Research & Methods	3
ARCH	601	Graduate Research Seminar	1
ARCH	602	Sustainable Urbanism	3
ARCH	603	High Performance Buildings	3
ARCH	605	Independent Research	2
ARCH	608	Design Management for the Built Environment	3
Elective (9 CH fo		option and 15CH for Non-Thesis option)	
			(Required Credit Hours:9)
ARCH	614	Sustainable Community Develop	3
ARCH	616	Impact Assessment for the Built Environment	3
ARCH	617	Selected Topics in Architectural Engineering	3
ARCH	623	Integrated Construction Tools and Processes	3
ARCH	631	Advanced Illumination and Daylighting	3
ARCH	632	Climate Research in Build Energy Efficiency	3
ARCH	633	Water Efficiency in the Built Environment	3
ARCH	634	Building Science Experiment Research Lab	3
ARCH	635	Fenestration Analysis & Design	3
ARCH	636	Building Ventilation	3
			Course Credits
Thesis/Pr	oject		
6 Credit	Hours for	Thesis option and 3 Credit Hours for non-thesis option	l
			(Required Credit Hours:6)
ARCH	698 *	Research Based Design Project	3
ARCH	699 **	Thesis	6
		* Non-Thesis Only	
		** Thesis Only	

Doctor of Philosophy (PhD) Concentration: Architectural Engineering

Description

The Department of Architectural Engineering offers a PhD degree in Architectural Engineering. The program targets practicing architectural engineers and architects with an undergraduate B.Sc degree in Architectural Engineering from UAE University, or equivalent in related fields, who wish to enhance their architectural knowledge, research, and advance their career, particularly in the area of sustainability and the built environment as related to urban studies, building science, or construction management. In addition, the program is aimed at MSc students who wish to pursue an academic career in Architectural Engineering.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Total Credit Hours: 55

Degree Requirements:

			Course Credits
Program	Requiren	nents:	
Part 1: G (Group 1		equirements	
			(Required Credit Hours:4)
MECH	710	Research Methodologies	3
СНМЕ	755	Graduate PhD Seminar	1
Group 2: (Any 6 ca		the following courses:)	
			(Required Credit Hours:6)
ELEC	620	Analytical Techniques in Engineering	3
ELEC	600	Numerical Methods in Engineering	3
STAT	615	Design/Analysis of Experiments	3
Part 2: C	oncentra	tion Requirements	
			(Required Credit Hours:9)
ARCH	734	Directed Studies in Architectural Engineering	3
ARCH	735	Advanced Topics in Architectural Engineering I	3
ARCH	736	Advanced Topics in Architectural Engineering II	3
		Requirements e courses from Architectural Eng. or other programs)	
			(Required Credit Hours:6)
Part 4: Q	ualificat	ion Requirements	
			(Required Credit Hours:0)
ARCH	800	Comprehensive Exam	0
ARCH	810	Prospectus Exam	0
Part 5: R	esearch l	Requirements	
			(Required Credit Hours:30)
ARCH	900	Dissertation Doctoral Research	30

0

ARCH

910

Dissertation Defense

Department of Chemical & Petroleum Engineering

Master of Science in Chemical Engineering

Description

The goal of this program is to graduate master-level chemical engineers who are highly qualified for a rewarding professional experience. Graduates may choose to work in the chemical, petrochemical or biochemical industries, continue on to other graduate level degrees, or join consulting/contracting companies. Prospective students have to be motivated to seek life-long learning and professional development and be capable of becoming professionals and leaders in the global chemical, petrochemical and biochemical industries. (Total credit hours is 30 for theses and 33 for no-theses).

Program Objectives

- 1. To generate graduates with high levels of competence in fundamental and applied concepts of chemical engineering.
- 2. To provide opportunities to address industrially important problems and to propose and investigate possible solutions
- 3. To provide an environment in which students can embrace social and personal development.
- 4. To motivate the students to seek life-long learning and professional development
- 5. To enhance students recognition and understanding of the professional and societal responsibilities associated with working in the industry.
- 6. To develop computational techniques, and written and oral communication skills.
- 7. To cultivate innovation and entrepreneurship through deeper understanding and advanced knowledge of the Chemical Engineering principles and operations.

Program Learning Outcomes

- 1. Apply advanced concepts of fundamental sciences and engineering to solve complex Chemical Engineering problems.
- 2. Demonstrate the ability to work effectively both independently and in teams of various backgrounds.
- 3. Apply innovative and practical solutions to existing or novel processes in research.
- 4. Search, evaluate and acquire information from relevant chemical engineering literature.
- 5. Design advanced approaches to conduct chemical engineering experiments.
- 6. Use advanced quantitative and qualitative methods to interpret research experimental results.
- 7. Disseminate and discuss their professional and scientific work to the general public, as well as to experts in both writing and oral formats.
- 8. Observe and apply ethical and professional codes and responsibilities.

Degree Requirements:

Total Credit Hours: 30

Master of Science in Petroleum Engineering

Description

The goal of this program is to graduate master-level petroleum engineers who are highly qualified for a rewarding professional experience. Graduates may choose to work in the petroleum industry, continue on to other graduate level degrees, or join consulting/contracting companies. Prospective students have to be motivated to seek life-long learning and professional development and be capable of becoming professionals and leaders in the global petroleum industries. (Total credit hours is 30 for theses and 33 for no-theses).

Program Objectives

- 1. To generate graduates with high levels of competence in fundamental and applied concepts of petroleum engineering.
- 2. To provide opportunities to address industrially important problems and to propose and investigate possible solutions.
- 3. To provide an environment in which students can embrace social and personal development.
- 4. To motivate the students to seek life-long learning and professional development
- 5. To enhance students recognition and understanding of the professional and societal responsibilities associated with working in the industry.
- 6. To develop computational techniques, and written and oral communication skills.
- 7. To cultivate innovation and entrepreneurship through deeper understanding and advanced knowledge of the Petroleum Engineering principles and operations.

Program Learning Outcomes

- 1. Apply advanced concepts of fundamental sciences and engineering to solve complex Petroleum Engineering problems.
- 2. Demonstrate the ability to work effectively both independently and in teams of various backgrounds.
- 3. Apply innovative and practical solutions to existing or novel processes in research.
- 4. Search, evaluate and acquire information from relevant petroleum engineering literature.
- 5. Design advanced approaches to conduct petroleum engineering experiments.
- 6. Use advanced quantitative and qualitative methods to interpret research experimental results.
- 7. Disseminate and discuss their professional and scientific work to the general public, as well as to experts in both writing and oral formats.
- 8. Observe and apply ethical and professional codes and responsibilities.

Degree :	Require	ments:	Total Credit Hours: 33
			Course Credits
Chemica	l and Petr	coleum Engineering and Geosciences	
Required	d Courses	S	
			(Required Credit Hours:6)
CPSE	600	Graduate Seminar	0
STAT	615	Design/Analysis of Experiments	3
PETE	619	Advanced Petroleum Production Engineering	3
			Course Credits
Petroleur	m Engine	erng	
Required	d Courses	S	
			(Required Credit Hours:12)
ELEC	600	Numerical Methods in Engineering	3
PETE	612	Advanced Natural Gas Engineering	3
PETE	615	Advanced Reservoir Engineering	3
PETE	626	Advanced formation evaluation	3
Elective	Courses	- 6 CH for thesis option and 15 CH for non-thesis	s option
			(Required Credit Hours: 6 - 15)
CPSE	624	Well Stimulation	3
CPSE	695 *	Technical Project	3
PETE	621	Non-Thermal EOR Methods	3
PETE	625	Selected Topics in Petroleum Engineering	3
PETE	608	Advanced Drilling Engineering	3
PETE	627	Advanced Reservoir Simulation	3
		* Non-thesis option	
			Course Credits
Thesis			
Required	d Course		
			(Required Credit Hours:6)
CPSE	699	Thesis Research	6

Doctor of Philosophy (PhD) Concentration: Chemical Engineering

Description

The Ph.D. Degree in Chemical Engineering usually takes four to five years to complete. It involves course work and a research leading to the PhD Thesis. PhD research within the Chemical Engineering Department is broad, applying fundamental and applied sciences to investigate some of today's hot topics. Students gain advanced knowledge of chemical engineering theory and its relationship to engineering processes, including gas separation and membranes, industrial wastewater treatment technologies and environmental engineering, polymer and polymer nanotechnology, catalytic reaction engineering, biotechnology and biochemical engineering, food and pharmaceutical processing, desalination and water purification, CO2 capture and storage, rheology, and composite materials. PhD graduates will be equipped with the important skills necessary for research and academia.

Program Learning Outcomes

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Doctor of Philosophy (PhD) Concentration: Petroleum Engineering

Description

The Ph.D. Degree in Petroleum Engineering usually takes four to five years to complete. It involves course work and a research leading to the PhD Thesis. PhD research within the Petroleum Engineering Department is broad, applying fundamental and applied sciences to investigate some of today's hot topics. Students gain advanced knowledge of petroleum engineering theory and its relationship to real life problems, including reservoir characterization and engineering, enhanced oil recovery and production operations, fluid flow in porous media, modeling of fluid properties of crude oil and natural gas, multiphase flow in wells. PhD graduates will be equipped with the important skills necessary for research and academia.

Program Learning Outcomes

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Department of Civil & Environmental Engineering

Master of Science in Civil Engineering

Description

This graduate program covers various Civil Engineering disciplines including Structural Engineering, Geotechnical Engineering, Construction Management, Highway and Transportation, Water Resources, Environmental Engineering, and Surveying. The necessity of maintaining the national development is placing increasing demands upon the government and private sectors to secure proper infrastructures, transportation networks, residential and industrial complexes. To help meet those demands, the program is designed to provide the community and industry with distinguished national manpower and highly qualified civil engineers for the sustainable development of the country. The program will train students intending to pursue their Ph.D. in Civil Engineering. Graduates of the program would provide the link between the advancements in Civil Engineering sciences and corresponding applications.

Program Objectives

- 1. Provide graduate students with a clear and comprehensive understanding of advanced civil engineering principles.
- 2. Train graduate students on addressing contemporary, sophisticated, and complex civil engineering issues or projects by utilizing or applying multidisciplinary problem-solving approaches and using modern engineering tools.
- 3. Serve the life-long learning needs of the engineering community and develop the graduate students' attitude to acquire further learning experiences and motivate them to get engaged in Ph.D. or advanced training programs
- 4. Provide efficient and productive research environment to carry out fundamental and advanced applied research to address civil engineering problems in general and regional and national problems in particular.
- 5. Provide the community and industry with quality technical assistance and highly qualified national manpower to lead the national industrial development plans.
- 6. Enrich the collaboration in research and graduate studies between the UAE University and the national and industrial sectors in the country and worldwide.
- 7. Provide a solid foundation for establishing a national research center for the Civil Engineering discipline in the country.

Program Learning Outcomes

- 1. Describe highly specialized civil engineering principles, concepts, and methodologies.
- 2. Evaluate the performance of advanced civil engineering systems and components through the use of applicable research principles, analytical methods or modeling techniques.
- 3. Conduct advanced research to develop innovative solutions for highly complex civil engineering problems through the use of appropriately selected research methodologies and modern engineering tools.
- 4. Apply advanced multidisciplinary problem-solving approaches to critically analyze contemporary, sophisticated, and highly complex civil engineering problems.
- 5. Present and critique highly complex civil engineering issues and communicate effectively at a high level of proficiency.
- 6. Lead professional activities and manage ethical issues in highly complex civil engineering projects.
- 7. Implement the social, environmental, ethical, economic and commercial aspects to develop valid decisions affecting highly complex civil engineering projects.

MECH

MEME

633

621

Finite Element Methods

Operations Research for Engineers

3

3

Civil Engineering	
(30 for theses and	33 for no-theses)

`		3 for no-theses)	
Required	d Courses	(Required Cred	it Hours:3)
CIVL	600	Graduate Seminar	0
STAT	615	Design/Analysis of Experiments	3
	Courses for Thesis	and 30 CH for Non-Thesis)	
		(Required Credit	t Hours:21)
CIVL	602	Environmental Impact Assessment Principles & Applications	3
CIVL	605	Experimental Methods in Civil Engineering	3
CIVL	610 *	Advanced Mechanics of Materials	3
CIVL	611	Structural Dynamics	3
CIVL	612	Prestressed Concrete Structures	3
CIVL	614	Advanced Steel Design	3
CIVL	615	Bridge Engineering	3
CIVL	616	Rehabilitation of Structures	3
CIVL	618	Construction Equipment & Methods	3
CIVL	620	Construction Cost Estimating	3
CIVL	621	Advanced Foundation Design	3
CIVL	622	Stability of Earth Supported Structures	3
CIVL	623 *	Foundation Dynamics	3
CIVL	624 *	Theory & Design of Pavement Structures	3
CIVL	625	Pavement Management Systems	3
CIVL	626	Advanced Traffic Engineering & Management	3
CIVL	627	Design of Transportation Systems	3
CIVL	628	Map Projections and Geometric Geodesy	3
CIVL	629	Digital Terrain Modeling & Applications	3
CIVL	630	Special Topics in Civil Engineering	3
CIVL	631 **	Directed Studies in Civil Engineering	3

		* CIVL 610,623,624 courses are offered intermitted	ently
		** Compulsory for non-thesis option students	
			Course Credits
Thesis			
Require	d Course		
			(Required Credit Hours:6)
CIVL	650 *	Research Thesis	6
		* Thesis option students	

Master of Science in Water Resources

Description

The Water Resources Master Program (WRMP) is an interdisciplinary graduate program offers Master of Science degree addressing all areas of Water. The program accepts both full and part time students since its commencement in September 1999. The WRMP offers thesis and non-thesis options. Students with thesis option need to complete 30 CHs for graduation; while non-thesis option students need to complete 33 CHs to graduate. The WRMP covers various aspects related to water resources including (but not limited to) Integrated Water Resources Management and Sustainability, Groundwater Hydrology, Surface Water Hydrology, Subsurface Contaminant Hydrology, Water Quality, Risk Assessment, Environmental Engineering and Protection, Environmental Impact Assessment, Water Science and Technology, Hydrological and Hydrogeological Modeling, Water and Wastewater Treatment, Water Desalination, Hydraulic and Coastal Systems, Water Recycling, Water Infrastructure, Water Resources Planning and Assessment using GIS and Remote Sensing, and Water Economics and Policy. The participation of several experts from different university colleges conforms to the multidisciplinary nature of the program and brings deep knowledge on enormous practical applications related to water resources.

Program Objectives

- 1. Educate and train graduate students to become competent in relevant issues of water resources.
- 2. Allow the program graduates, who may already be working in related institutions, to provide leadership and technical assistance to their institutions on water-resource related issues in accordance with the national needs.
- 3. Enrich and strengthen cooperation and scientific research in the field of water resources on national, regional, and international levels.
- 4. Motivate students to be easily engaged in life-learning experience in various areas related to Water Resources.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Gain comprehensive knowledge on Water Resources Assessment, Development and Management with specific reference to arid regions conditions
- 2. Acquire skills to address contemporary issues related to Water Resources and understand their social and economic impacts.
- 3. Develop skills of utilizing modern assessment and prediction tools related to water resources including field tests and computer software.
- 4. Communicate effectively and produce professional reports related to various disciplines of Water Resources.
- 5. Apply basic concepts in management, public policy and leadership in various areas of water resources.

Total Credit Hours: 30

Degree Requirements:

Water Resources (30 for theses and 33 for no-theses)			
Required			
(9 CHs f	or thesis a	and non-thesis) (Required Cre	dit Hours:9)
WATR	602	Water Resources Management	3
WATR	608	Graduate Seminar	0
WATR	605	Introduction to Water Science and Technology	3
STAT	612	Experimental Design & Analysis	3
Elective (Experimental Design & Analysis	
Elective	Courses	and 21 CHs for non-thesis)	
		(Required Cred	it Hours:15)
CIVL	602	Environmental Impact Assessment Principles & Applications	3
WATR	601	Fluid Mechanics for Non Eng.	3
WATR	615	Groundwater Hydrology	3
WATR	617	Water and Wastewater Treatment	3
WATR	620	Membrane Desalination	3
WATR	631	Special Topics in Water Resources	3
WATR	632	Directed Studies in Water Resources	1
WATR	603	Surface Water Hydrology	3
WATR	606	Water Quality	3
WATR	611	Hydraulics of Closed Conduits	3
WATR	616	Advanced Hydrochemistry	3
WATR	618	Introduction to Water Desalination	3
WATR	622	Coastal Hydrodynamics	3
Thesis/Pr	oject		
6 Credit	Hours for	Thesis option and 3 Credit Hours for non-thesis option	
		(Required Cre	dit Hours:6)
WATR	640 *	Research Thesis	6
WATR	695 **	Technical Project	3
		* For Thesis	

** For Non-Thesis

Description

The Department of Civil and Environmental Engineering offers Ph.D. degree in Civil Engineering. The program has evolved in response to the national need of developing qualified and specialized engineers in the various disciplines of Civil Engineering including structural, geotechnical, environmental, water resources, highway, transportation, surveying, and construction management. The award of the Ph.D. degree in Civil Engineering requires successful completion of a minimum of 25 credit hours of graduate "taught" coursework and 30 credit hours in research in addition to passing comprehensive and prospectus exams. Graduates of the program will contribute to the transfer of research knowledge, skills, and methodologies to work environments. Graduates of the program will be highly specialized in their respective areas and therefore they are anticipated to take the lead in the national development of the UAE in the various fields of Civil Engineering.

Program Learning Outcomes

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Program	Requirer	ments:	
Part 1: G	eneral R	equirements (Group 1)	
			(Required Credit Hours:4)
MECH	710	Research Methodologies	3
СНМЕ	755	Graduate PhD Seminar	1
Group 2:	(Any 6	credits of the following courses:)	
			(Required Credit Hours:6)
ELEC	620	Analytical Techniques in Engineering	3
ELEC	600	Numerical Methods in Engineering	3
STAT	615	Design/Analysis of Experiments	3
Part 2: C	oncentra	ation Requirements	
			(Required Credit Hours:9)
CIVL	631	Directed Studies in Civil Engineering	3
CIVL	735	Advanced Topics in Civil Engineering I	3
CIVL	736	Advanced Topics in Civil Engineering II	3
		Requirements	
(Any two) Electiv	e courses from Civil Eng. or other programs)	(Required Credit Hours:6)
			(110401100 01101111001210)
Part 4: Q	ualificat	ion Requirements	
			(Required Credit Hours:0)
CIVL	800	Comprehensive Exam	0
CIVL	810	Prospectus Exam	0
Part 5: R	esearch l	Requirements	
			(Required Credit Hours:30)
CIVL	900	Dissertation Doctoral Research	30
CIVL	910	Dissertation Defense	0

Doctor of Philosophy (PhD) Concentration: Water Resources

Description

The Water Resources Graduate Program offers a Ph.D. degree in Water Resources that is in response to the national dire needs of developing its water resources. The program also aims at preparing specialists capable of providing leadership and necessary technical expertise to governmental and private sectors in different areas of water resources. These include surface and ground water resources, irrigation, treatment, desalination, in addition to management of water resources and demands. The offered program is interdisciplinary and accepts students with backgrounds in Engineering, Science, and Agriculture. The Ph.D degree in Water Resources requires successful completion of a minimum of 25 credit hours of graduate coursework and 30 credit hours in research in addition to passing comprehensive, prospectus, and final exams.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree Requirements:Total Credit Hours: 55

			Course Credits
Program 1	Requirer	nents:	
Part 1: G	eneral R	equirements (Group 1)	
			(Required Credit Hours:4)
MECH	710	Research Methodologies	3
СНМЕ	755	Graduate PhD Seminar	1
Group 2:	(Any 6	credits of the following courses)	
			(Required Credit Hours:6)
ELEC	620	Analytical Techniques in Engineering	3
ELEC	600	Numerical Methods in Engineering	3
STAT	615	Design/Analysis of Experiments	3
Part 2: Co	oncentra	tion Requirements	
			(Required Credit Hours:9)
WATR	632	Directed Studies in Water Resources	1
WATR	735	Advanced Topics in Water Resources I	3
WATR	736	Advanced Topics in Water Resources II	3
		Requirements e courses from Water Resources or other programs)	
			(Required Credit Hours:6)
Part 4: Q	ualificat	ion Requirements	
			(Required Credit Hours:0)
WATR	800	Comprehensive Exam	0
WATR	810	Prospectus Exam	0
Part 5: Ro	esearch l	Requirements	
			(Required Credit Hours:30)
WATR	900	Dissertation Doctoral Research	30
WATR	910	Dissertation Defense	0

Doctor of Philosophy (PhD) Concentration: Material Science and Engineering

Description

The Ph.D. program in Material Science and Engineering is designed to give students a broad and deep understanding of materials science and engineering so that they will have long and fruitful careers as researchers. The interdisciplinary nature of the program is ideally suited to address this requirement. The graduate students in the Materials Science and Engineering Program benefit from the unique and broad combination of faculty members and research facilities. The program focuses on all materials: metals, polymers, ceramics, electronic materials, nanomaterials, biomaterials and their composites. The investments made in this graduate program will produce well-educated professionals who will contribute to society and the economy. The award of the Ph.D. degree in Material Science and Engineering requires successful completion of a minimum of 36 credit hours of graduate coursework and 36 credit hours in research in addition to passing comprehensive and prospectus exams.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

			Course Credits
Program	Requirer	ments:	
Part 1: G	eneral R	equirements (Group 1)	
			(Required Credit Hours:4)
MECH	710	Research Methodologies	3
СНМЕ	755	Graduate PhD Seminar	1
Group 2:	(Any 6	credits of the following courses)	
			(Required Credit Hours:6)
ELEC	620	Analytical Techniques in Engineering	3
ELEC	600	Numerical Methods in Engineering	3
STAT	615	Design/Analysis of Experiments	3
Part 2: C	oncentra	tion Requirements	
			(Required Credit Hours:9)
MTSE	625	Independent Studies in Materials Science and Eng.	3
MTSE	735	Advanced Topics in Material Science and Engineering	ng I 3
MTSE	736	Advanced Topics in Material Science and Engineering	ng II 3
		Requirements e courses from Material Sci. and Eng. or other programs)
			(Required Credit Hours:6)
Part 4: Q	ualificat	ion Requirements	
			(Required Credit Hours:0)
MTSE	800	Comprehensive Exam	0
MTSE	810	Prospectus Exam	0
Part 5: R	esearch l	Requirements	
			(Required Credit Hours:30)
MTSE	900	Dissertation Doctoral Research	30
MTSE	910	Dissertation Defense	0

Department of Electrical Engineering

Master of Science in Electrical Engineering

Description

The Master of science program in Electrical Engineering provides advanced study opportunities for electrical engineers. The program includes elective courses, enabling students to individually tailor their programs to provide emphasis in a particular specialization (e.g., Power, control, communication, etc.). Areas of study include power systems, power electronics, electronics, control systems, computer engineering and communication systems. The program has a thesis and non-thesis options. The program provides the graduates with all the necessary abilities to pursue in a PhD program and/or actively participate in the management and maintenance of new technological innovations as well as the involvement in the development and design of new products. Other objectives include establishing strong two-way relationships with the local industry and governmental establishments, in addition to promoting scientific research and development (R&D) activities.(Total credit hours is 30 for theses and 33 for no-theses).

Program Objectives

- 1. Provide graduates with a high level of analytical and applied skills necessary to actively participate in technology innovations in addition to maintaining the present ones in the UAE and abroad.
- 2. Promote the interaction between UAE University and the local industry. The industry is encouraged not only to actually participate in selecting the various courses and their contents but also to have an effective role in endorsing the research themes of the students, especially those on study leave from the industry. Consequently, co-supervision from qualified scientists and researchers from the industry is encouraged.
- 3. Promote the creative thinking skills among graduates necessary for lifelong learning.
- 4. Promote scientific research and development (R&D) activities.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate understanding of highly specialized electrical engineering principles, concepts, and methodologies .
- 2. Evaluate the performance of advanced electrical engineering systems and components through the use of applicable research principles, analytical methods and modelling techniques.
- 3. Conduct advanced applied research to develop innovative solutions for highly complex electrical engineering problems through the use of appropriately selected research methodologies and modern engineering tools.
- 4. Apply advanced multidisciplinary problem-solving approaches to critically analyze contemporary, sophisticated, and highly complex electrical engineering problems.
- 5. Present and critique highly complex industrial electrical engineering issues and communicate effectively at a high level of proficiency.
- 6. Demonstrate leadership and management of professional activities and ethical issues in highly complex electrical engineering projects.
- 7. Recognize the social, environmental, ethical, economic and commercial considerations and professional responsibilities affecting highly complex industrial electrical engineering projects.

Degree Requirements:

0

Electrical Engineering (30 for theses and 33 for no-theses)

ELEC

691

Graduate Seminar I

	eses and 33	3 for no-theses)	
	d Courses	nd non-thesis)	
() (1151	or thesis a	nd non-diesis)	(Required Credit Hours:9)
ELEC	602	Linear Systems	3
ELEC	604	Advanced Digital Signal Processing	3
ELEC	620	Analytical Techniques in Engineering	3
Elective (15 CHs		and 21 CHs for non-thesis)	
			(Required Credit Hours: 15 - 21)
ELEC	612	Communications Networks	3
ELEC	613	Wireless Communications	3
ELEC	615	Adaptive Signal Processing	3
ELEC	617	Antenna Design & Applications	3
ELEC	619	Advanced Topics in Communication Engineering	ng 3
ELEC	622	Power Systems Protection	3
ELEC	625	Power Systems Quality	3
ELEC	629	Advanced Topics in Power Engineering	3
ELEC	637	Sensors Design and Applications	3
ELEC	639	Advanced Topics in Electrical Engineering	3
ELEC	641	Contemporary Digital Systems	3
ELEC	644	Artificial Neural Networks	3
ELEC	646	Computational Vision	3
ELEC	649	Advanced Topics in Computer Engineering	3
ELEC	652	Nonlinear Control	3
ELEC	656	Optimal Control	3
ELEC	659	Advanced Topics in Control Systems	3
			Course Credits
	d Seminar		
Required	d Courses		(D. 1.10 PAY 0.00
			(Required Credit Hours: 3 - 6)

ELEC 693 * Master's Research Thesis ELEC 694 ** Research / Design Paper * For these-option only ** For non-thesis option only	ELEC	692	Graduate Seminar II	0
* For these-option only	ELEC	693 *	Master's Research Thesis	6
	ELEC	694 **	Research / Design Paper	3
** For non-thesis option only			* For these-option only	
			** For non-thesis option only	

Doctor of Philosophy (PhD) Concentration: Electrical Engineering

Description

The rapid growth of the communications, renewable energy, and oil industry in UAE requires academic infrastructure that can support the management and maintenance of new technological innovations, and for involvement in the development and design of new products. The electrical engineering department at UAE university has initiated PhD program in to support these growing needs. The award of the Ph.D. degree in Electrical Engineering requires successful completion of a minimum of 55 credit hours. 25 credit hours of graduate coursework and 30 credit hours in research in addition to passing comprehensive and prospectus exams. Graduates of the program will contribute to the transfer of research knowledge, skills, and methodologies to work environments. Graduates of the program will be highly specialized in their respective areas and therefore they are anticipated to take the lead in the national development of the UAE in the various fields of Electrical Engineering.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Total Credit Hours: 55

Degree Requirements:

			Course Credits
Program	Requirer	nents:	
Part 1: G	eneral R	equirements (Group 1)	
			(Required Credit Hours:4)
MECH	710	Research Methodologies	3
СНМЕ	755	Graduate PhD Seminar	1
Group 2:	(Any 6	credits of the following courses)	
			(Required Credit Hours:6)
ELEC	620	Analytical Techniques in Engineering	3
ELEC	600	Numerical Methods in Engineering	3
STAT	615	Design/Analysis of Experiments	3
Part 2: C	oncentra	tion Requirements	
			(Required Credit Hours:9)
ELEC	640	Directed Studies in Electrical Engineering	3
ELEC	735	Advanced Topics in Electrical Eng I	3
ELEC	736	Advanced Topics in Electrical Eng II	3
		Requirements e courses from Electrical Eng. or other programs)	
			(Required Credit Hours:6)
Part 4: Q	ualificat	ion Requirements	
			(Required Credit Hours:0)
ELEC	800	Comprehensive Exam	0
ELEC	810	Prospectus Exam	0
Part 5: R	esearch	Requirements	
			(Required Credit Hours:30)
ELEC	900	Dissertation Doctoral Research	30
ELEC	910	Dissertation Defense	0

Department of Mechanical

Master of Engineering Management

Description

Engineering Management is the Process of Planning, Organizing, Staffing, leading and influencing People and Controlling Activities which have a Technological Component. These functions require foundation skills from engineering managers to manage themselves, staff, teams, projects, technologies and global issues of importance. These requirements being partly technical and partly business related, the Colleges of Engineering, and Business and Economics got together and launched the program in 2006. The program focuses on product development, process management, Quality Engineering and Project management from the technical side and leadership, management of technical innovations, supply chain, finance and decision making from the business side. The knowledge and skills thus gained are integrated through an action project.

Program Objectives

- 1. Management decision-making skills.
- 2. Professional leadership and management skills.
- 3. Knowledge of cost, financial and economic analysis.
- 4. Knowledge about management of existing and emerging technologies.
- 5. Continued intellectual growth in the engineering field.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Describe the designing process and synthesize strategies to manage designing an overall engineering system or product that meets desired needs.
- 2. Apply knowledge of mathematics, engineering and technology in managing engineering processes.
- 3. Analyze engineering problems relating to Quality and manufacturing operations and Synthesize Solutions.
- 4. Describe supply chain concepts and apply them to improve the business' overall and supply chain performance
- 5. Apply concepts to manage technological innovations and synthesize relevant business strategy.
- 6. Apply the accounting information for decision-making
- 7. Apply knowledge of applied statistics and decision techniques in managing engineering processes.
- 8. Analyze subjects with technical and business content and synthesize effective written reports and oral presentations
- 9. Apply theories of human behavior to analyze and evaluate the role of managers and leaders in driving effective employee behaviors in industrial organizational contexts.

Degree Requirements:

Total Credit Hours: 33

Course Credits

Engineering Management

Required	Courses		
			(Required Credit Hours:33)
ACCT	603	Management Accounting & Financial Analysis	3
MEME	621	Operations Research for Engineers	3
MEME	635	Project Management for Engineers	3
MEME	651	Quality Engineering	3
MEME	661	Engineering Process Management	3
MEME	676	Product Development and Marketing	3
MEME	685	Action Project (Capstone)	3
MGMT	675	Management and Leadership	3
MIST	625	Management of Technology	3
SCML	655	Supply Chain Management	3
STAT	609	Decision Techniques and Data Analysis	3

Course Credits

Bridging Course

This bridging course is only needed for students who did not take an undergraduate statistics course and is a prerequisite for the "Decision Techniques and Data Analysis (STAT 609)" MEM course.

(Required Credit Hours:1)

STAT	Bridging Statistics	
------	---------------------	--

Master of Science in Mechanical Engineering

Description

Mechanical engineering is one of the broadest and oldest branches of engineering and can require work that ranges from the design and manufacture of very fine and sensitive instruments with micro and nano scales, to the design and fabrication of huge power plants. The ME program emphasizes a fundamental approach to engineering in which the student learns to identify needs, define problems and apply basic principles and techniques to obtain a solution. This philosophy is incorporated in the classroom lectures, laboratory activities, design projects and research. ME graduates are expected to deal with moving devices and complex systems. Students learn about materials, design, manufacturing, solid and fluid mechanics, thermodynamics, heat transfer, control, and instrumentation, to understand mechanical systems. Specialized ME subjects include energy conversion, energy management, air conditioning, turbumachinery, composite materials and materials processing, combustion, fracture mechanics, selected topics in mechatronics and vibration, control engineering, introduction to robotics, selected topics in manufacturing and design, maintenance engineering, biomechanics and selected topics in bioengineering. (Total credit hours is 30 for thesis and 33 for no-thesis).

Program Objectives

- 1. Foster high quality graduate level mechanical engineering education and research and generate graduates with high levels of competence in fundamental and applied concepts of mechanical engineering.
- 2. Prepare graduates for successful careers in industry and/or academia and to promote and instil ethical practice and life-long learning.
- 3. Enrich the research collaboration between the university and the industrial sectors in the country and worldwide.
- 4. Graduate professionals and leaders in the global industries.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Apply knowledge and skills ethically for solving mechanical engineering problems and drawing conclusions.
- 2. Conduct mechanical engineering studies utilizing experimental, computer software and other modern tools.
- 3. Communicate effectively, both orally and in writing to present technical and research work.
- 4. Conduct independently and with a team quality scientific and applied research.

Thesis

MECH

MECH

Required Courses

(For thesis student only)

660

690

Thesis

Mechanical Engineering Seminar

Total Credit Hours: 30

(Required Credit Hours:6)

0

6

Doctor of Philosophy (PhD) Concentration: Mechanical Engineering

Description

The mechanical engineering ME graduate program offers Ph.D. degree in Mechanical Engineering. It strives to help students to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth. The aim of the program is to prepare graduates for research and professional practice in an era of rapidly advancing interdisciplinary technology. Graduates with advanced research and education in all ME relevant fields can contribute effectively to the development of various national and international industries and academia. They will be qualified and specialized in various disciplines of ME such as materials, design, manufacturing, fluid mechanics, thermodynamics, heat transfer, control and dynamic. Specialized PhD topics include materials processing and characterization, fracture mechanics and fatigue, composite materials, polymers, tissue engineering, biomechanics, nanomechanics, biomedical engineering, energy conversion, combustion, microfluidics, micropower generation, mechanisms, mechatronics, robotics engineering, MEMS, vibrations, and nanotecknology. The award of the Ph.D. degree in ME requires successful completion of a minimum of 25 credit hours of graduate coursework and 30 credit hours in research in addition to passing comprehensive and prospectus exams.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Total Credit Hours: 55

Degree Requirements:

			Course Credits
Program 1	Requirer	ments:	
Part 1: G	eneral R	equirements (Group 1)	
			(Required Credit Hours:4)
MECH	710	Research Methodologies	3
СНМЕ	755	Graduate PhD Seminar	1
Group 2:	(Any 6	credits of the following courses)	
			(Required Credit Hours:6)
ELEC	620	Analytical Techniques in Engineering	3
ELEC	600	Numerical Methods in Engineering	3
STAT	615	Design/Analysis of Experiments	3
Part 2: Co	oncentra	tion Requirements	
			(Required Credit Hours:9)
MECH	640	Directed Studies in Mechanical Engineering	3
MECH	735	Advanced Topics in Mechanical Engineering I	3
MECH	736	Advanced Topics in Mechanical Engineering II	3
		Requirements e courses from Mechanical Eng. or other programs)	(Required Credit Hours:6)
			(Required Credit Hours.o)
Part 4: Q	ualificat	ion Requirements	
			(Required Credit Hours:0)
MECH	800	Comprehensive Exam	0
MECH	810	Prospectus Exam	0
Part 5: Ro	esearch l	Requirements	
			(Required Credit Hours:30)
MECH	900	Dissertation Doctoral Research	30
MECH	910	Dissertation Defense	0

College of Food and Agriculture

Department of Food, Nutrition and Health

Master of Science in Food Science

Description

The Department of Food Science is proposing Master Program in Food Science which will give students an opportunity to gain advanced knowledge related to Food Quality and Safety, Food Chemistry and Analysis, Food Processing and Engineering as well as Innovative and Functional Foods. Master program in Food Science is designed to reinforce and enhance the student's knowledge of scientific principles and processes used to produce safe and high quality foods. The program will provide a science-based professional education that encompasses classroom theory, practical research, and its application. Students will have an opportunity to comprehensively study theoretical and applied aspects of the science, technology, and engineering of foods. An in-depth understanding of science, as it applies to foods, will assist students with interest in career and technical education, to understand the food industry as well as food preparation in their daily life. This program is designed to produce expert food science postgraduate with the knowledge and skills to develop and further excel in the professional world.

Program Objectives

- 1. Provide students with advanced theoretical and research knowledge in the field.
- 2. Empower students to integrate and apply knowledge of food science to real-world issues in food systems, components, products, and processes.
- 3. Produce highly trained graduates able to meet leadership needs of national and international professional careers.
- 4. Develop well-prepared graduates to become research leaders and innovators in food science field.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Discuss advanced concepts, theories, and emerging food science methodologies.
- 2. Apply core knowledge of food science to identify problems and propose solutions in the field.
- 3. Design and conduct scientific research in the field of food science, and use quantitative methods to analyze results.
- 4. Communicate scientific and technical knowledge in written and oral forms to diverse audiences.
- 5. Demonstrate knowledge of food science contemporary issues, ethics, and professional responsibility.

Total Credit Hours: 30

Degree Requirements:

\sim	~ 11
Course	('redite
Course	Cicuio

			Course Credits
Food Sci	ence		
Required	d Courses		
			(Required Credit Hours:15)
COSC	501	Research Methods	1
COSC	502	Ethics of Scientific Research	1
FDSC	605	Graduate Seminar	1
FDSC	610	Advanced Food Chemistry - 1	2
FDSC	622	Advanced Food Analysis - I	2
FDSC	633	Advanced Food Processing I	3
FDSC	640	Advanced Food Microbiology - I	3
STAT	503	Applied Statistics	2
Elective	Courses -	6 CH for Thesis and 12 CH for Non-Thesis	
			(Required Credit Hours: 6 - 12)
FDSC	611	Food Physics	2
FDSC	615	Advanced Shelf Life of Stored Foods	3
FDSC	630	Advanced Food Technologies	3
FDSC	631	Enzymes Technology and Fermentation	3
FDSC	650	Food Inspection	2
FDSC	651	Advanced Food Laws and Regulations	2
FDSC	660	Novel and Functional Foods	3
FDSC	691	Special Topics in Food Science	2
Project of	or Thesis		(Paguirad Cradit Houses 2 0)
EDGC	605 *	Craduation Descends Project	(Required Credit Hours: 3 - 9)
FDSC	695 *	Graduation Research Project	3
FDSC	699 **	Research Thesis	9
		* For non-thesis option	

** For Thesis Option

Master of Science in Human Nutrition

Description

The Master of Science in Human Nutrition Program will be a full-time program delivered through a duration of 2 years. The completion time of the program is two years (4 semesters) for full time students and four years (8 semesters) for part-time students. Students can be enrolled in the Program in every Fall semester of the academic year. The first 2 semesters (first academic year) courses will be delivered in the UAEU, on the 3rd semester students will be based in United Kingdom (UK) and courses will be delivered in the University College London (UCL), while the 4th semester students will be back in UAEU to carry on their remaining courses and will also be conducting their thesis research which will be co-supervised by one faculty member from UAEU and another faculty from UCL.

Program Objectives

- 1. Equip students with advanced knowledge, scientific research and problem-solving skills in human nutrition at the individual, family and community levels.
- 2. Provide students with comprehensive educational experience to perform outcome-based research, as well as prepare graduates to pursue more advanced degree.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Evaluate the impact of nutrition on health status of individuals and communities.
- 2. Design nutrition interventions using scientific evidence in improving health and well-being of individuals and communities.
- 3. Conduct outcome-based research by using ethical guidelines and appropriate research methods of assessments and analysis
- 4. Demonstrate advanced writing and oral communication skills using the scientific literature

Degree Requirements:

	O 11.
Course	('redife
Course	Cicuits

		Course	e Credits
Human N	utrition		
Required	Courses		
		(Required Credit He	ours:17)
CMPH	602	Biostatistics I	2
NUTR	635	Papers and Research Proposal Writing in Nutrition Related Subjects	1
NUTR	615	Community Nutrition and Health Promotion	3
NUTR	665	Fundamentals of Nutrition and Metabolism (UCL-GASNG002)	2
NUTR	670	Practical Nutrition Assessment (UCL-GASNG005)	2
NUTR	650	Current Topics in Nutrition	3
NUTR	675	Experimental Design and Research Methods (UCL-GASNG007)	2
NUTR	660	Disease-related malnutrition (UCL-GASNG001)	2
Elective	Courses		
		(Required Credit I	Hours:6)
NUTR	605	Advanced Nutrition Counseling Techniques	3
NUTR	625	Sport and Exercise Nutrition	3
NUTR	630	Pediatric Diet Therapy	3
NUTR	645	Advanced Nutrition and Chronic Diseases	3
Thesis			
		(Required Credit I	Hours:9
NUTR	655 *	Thesis Research	9
		* The student may register 2 Credits per semester from Thesis Research (NUTR655) starting from the 2nd semester	

Doctor of Philosophy (PhD) Concentration: Food Science

Description

The Ph.D. concentration "Food Science" aims to give students an opportunity to gain advanced knowledge related to Food Quality and Safety, Food Chemistry and Analysis, Food Processing and Engineering as well as Innovative and Functional Foods. The concentration is designed to reinforce and enhance the student's knowledge of scientific principles and processes used to produce safe and high quality foods. In Addition the concentration provides a science-based professional education that encompasses theory, practical research, and application of science and technology to conventional and novel foods. Furthermore, this program is designed to produce expert food science postgraduate with the knowledge and skills to develop and further excel in the professional world.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Doctor of Philosophy (PhD) Concentration: Nutritional Sciences

Description

The Nutritional Sciences PhD program at the College of Food and Agriculture is within the common framework of the UAE University Ph.D. Program. The objectives of the program are to provide students with (1) expertise in the fundamental principles of modern nutritional science, (2) detailed conceptual and technical skills in the identified area of specialized research interest, (3) strong written and oral communication skills, and (4) the opportunity to conduct dissertation research that will contribute to the body of knowledge in nutrition. The faculty recognizes that the career goal of each student must be given maximum consideration in the design of individual programs of study. Nutritional Sciences students will follow the curriculum described in the Nutritional Sciences PhD program. Students with extensive prior training in nutrition, such as master's degree holders, may petition the Graduate Committee to evaluate modification of the curriculum.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree Requirements:Total Credit Hours: 58

Program Requirements: Part 1: General Requirements (Required Credit Hours:9) **ETHC** 600 Ethical Conduct in Medical Research 1 615 **STAT** Design/Analysis of Experiments 3 PHY 601 2 Human Physiology 1 2 **PHY** 602 Human Physiology 2 **COFA** 650 **Graduate Seminar** 1 Part 2: Concentration Requirements (Required Credit Hours:11) **CHEM** 641 Advanced Biochemistry II 3 **NUTR** 805 Advanced Macronutrient Metabolism 3 820 Advanced Micronutrient Metabolism 4 **NUTR NUTR** 830 **Human Nutrition Assessment** 3 Part 3: Elective Requirements (Required Credit Hours:8) **NUTR** 705 **Advanced Community Nutrition** 3 **NUTR** 707 3 Advanced Medical Nutrition Therapy 2 **NUTR** 710 **Nutraceuticals and Functional Foods NUTR** 720 **Nutritional Immunology** 2 **NUTR** 730 Cell Biology in Health and Disease 2 **NUTR** 740 Exercise and Health 2 Part 4: Qualification Requirements (Required Credit Hours:0) **NUTR** 800 Comprehensive Exam 0 0 **NUTR** 810 Research Proposal Part 5: Research Requirements (Required Credit Hours:30) **NUTR** 900 Dissertation Research 30 **NUTR** 910 Dissertation Defense 0

Department of Integrative Agriculture

Master of Science in Horticulture

Description

Graduates from the Master's Degree in Horticulture are in high demand in the current job market. The occupational positions which can be filled by graduates of this proposed program include, but are not limited to, horticulture architects and designers, city horticulturists, research assistants and university instructors, among many others. Students can focus their study in the areas of horticulture, agro-ecology, biotechnology, breeding, crop physiology, crop production, mineral nutrition, modeling and quantitative horticulture, plant growth and development, post-harvest physiology, renegotiation/restoration, as well as sustainable water management.

Program Objectives

- 1. To prepare future leaders for industry, business and government agencies.
- 2. To prepare students for PhD programs in various Horticultural science disciplines.
- 3. To train students in interdisciplinary programs with emphasis on achieving career goals and objectives.
- 4. To graduate students who are competitive in national and international job markets.
- 5. To enhance students' abilities in scientific methodology in collecting, summarizing and analyzing research data.
- 6. To prepare students to engage in high-level, horticultural problem solving.
- 7. To train students to meet job requirements, enhance skills and to pursue life-long learning.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Discuss contemporary issues related to horticultural challenges.
- 2. Evaluate horticultural components, processes and the role of anthropogenic factors.
- 3. Evaluate available resources, issues and challenges related to horticultural in UAE.
- 4. Design and conduct scientific horticulture research, and use quantitative methods to analyze results.

- 5. Demonstrate the ability to apply knowledge and skills to resolve problems, creatively and independently.
- 6. Evaluate issues of ethical behavior in science, critically and reflectively.
- 7. Demonstrate strong written and oral presentation skills.

3

3

Course Credits Horticulure **Required Courses** (Required Credit Hours:7) **HORT** 610 1 Seminar in Horticulture **HORT** 3 611 **Ecology and Agriculture STAT** 612 3 Experimental Design & Analysis **Elective Courses** (Required Credit Hours:3) **HORT** 620 Plant Communities in UAE 3 **HORT** 622 Research Perspectives in Horticulture 3 **STAT** 621 3 Multivariate Systems & Modeling Specialization Courses - Selected with Academic Advisor (Required Credit Hours:20) **HORT** 630 3 Greenhouse & Nursery Crop Production **HORT** 631 Post Harvest Technology of Horticulture Crops 3 2 **HORT** 632 **Small Fruit Production** 3 **HORT** 633 Crop Management Systems for Vegetable Production **HORT** 3 634 Forage Crop Ecology **HORT** 635 3 Systems Analysis in Agriculture and Resource Management **HORT** 3 636 Physiological Principles in Environmental Horticulture **HORT** 3 638 Turfgrass and Amenity Grassland Utilization and Management **HORT** 639 Woody Plants in the Landscape: Growth, Ecology and Management 3 640 Tree Biotechnology 3 **HORT** 3 **HORT** 641 Modeling Horticultural System **HORT** 642 3 Water Quality, Soil, Salinity and Reclamation **HORT** 3 643 Irrigation & Drainage Systems 2 **HORT** 644 Landscape Ecology 3 **HORT UAE Floristics** 646 **HORT** 3 647 **Ecology of Crop Systems**

Conservation of Plant Genetic Resources

Reproductive Biology of Flowering Plants

HORT

HORT

648

650

HORT	649	Plant Propagation	3
HORT	651	Concepts & Systems of Plant Protection and Pest Management	3
			Course Credits
Thesis			
Required	Course		
		(Required	Credit Hours:6)
HORT	699	Thesis	6

Doctor of Philosophy (PhD) Concentration: Horticultural Science

Description

The degree of Doctor of Philosophy(PhD) in horticulture shall represent the attainment of a high level of scholarship and achievement in coursework and independent research. The Doctor of Philosophy in horticulture is designed to prepare students for academic or research-based careers. Graduate students are expected to excel in research, teaching, extension activities and develop professionally. Independent and original research is an important part of the graduate program and forms a basis for a graduate thesis. The research shall represent original contribution to human knowledge in the particular academic field and is presented in a written research dissertation of a publishable standard. The document shall also demonstrate the candidate's acquaintance with the literature of the field and the proper selection and execution of research methodology. The program cover the following areas: ornamental horticulture, floriculture, turfgrass, vegetable crops, fruit crops, environmental stress physiology, plant breeding, plant pathology and plant pathogen interactions, molecular biology, plant biotechnology, tissue culture, soil, water and sustainable and organic farming and others.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Total Credit Hours: 54

Degree Requirements:

Course Credits Program Requirements: Part 1: General Requirements (Required Credit Hours:7) Ethics of Scientific Research II **COSC** 702 1 3 **STAT** 615 Design/Analysis of Experiments **COFA** 650 **Graduate Seminar** 1 2 **COFA** 670 Global Food Supply Chain Management Part 2: Concentration (Required Credit Hours:9) 3 **HORT** 805 Molecular approaches in plant research 3 **HORT** 815 Assessment of energy and element fluxes in agroecosytems **HORT** Urban landscape planning, policy and management 3 820 Part 3: Electives (Students must take at least one course at the 700 level.) (Required Credit Hours:8) **COFA** 660 2 Advanced scientific writing 3 Crop Management Systems for Vegetable Production **HORT** 633 **HORT** 643 Irrigation & Drainage Systems 3 3 **HORT** Modeling Horticultural System 641 Water Quality, Soil, Salinity and Reclamation 3 **HORT** 642 3 **HORT** Conservation of Plant Genetic Resources 648 **HORT** 651 3 Concepts & Systems of Plant Protection and Pest Management **HORT** 3 720 Integrated agricultural production systems 3 **HORT** 725 Methods in agricultural microbiology **HORT** 730 Control and evaluation of agricultural product quality 2

			(Required Credit Hours:0)
ARAG	800	Comprehensive Examination	0
Part 5: D	issertati	on Research	
			(Required Credit Hours:30)
HORT	900	Dissertation Research	30

Part 4: Qualification

Department of Veterinary Medicine

Doctor of Philosophy (PhD) Concentration: Animal Science

Description

The degree of Doctor of Philosophy(PhD) in Animal Science shall represent the attainment of a high level of scholarship and achievement in coursework and independent research. The Doctor of Philosophy in Animal Science is designed to prepare students for academic or research-based careers. Graduate students are expected to excel in research, teaching, extension activities and develop professionally. Independent and original research is an important part of the graduate program and forms a basis for a graduate thesis. The research shall represent original contribution to human knowledge in the particular academic field and is presented in a written research dissertation of a publishable standard. The document shall also demonstrate the candidate's acquaintance with the literature of the field and the proper selection and execution of research methodology. The program cover the following areas: Animal growth and development, nutrition, breeding and genetics, physiology, production and management of ruminants and poultry, and animal well-being and behavior.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

			Course Credits
Program	Requirer	ments:	
Part 1: G	eneral R	equirements	
			(Required Credit Hours:7)
COSC	702	Ethics of Scientific Research II	1
STAT	615	Design/Analysis of Experiments	3
COFA	650	Graduate Seminar	1
COFA	670	Global Food Supply Chain Management	2
Part 2: C	oncentra	ation Requirements	
			(Required Credit Hours:9)
ANSC	805	Advanced Reproductive Physiology and biotechr	nology 3
ANSC	815	Animal Growth and Development	3
ANSC	820	Animal Production and Management Systems	3
Part 3: E	lective R	Requirements	
			(Required Credit Hours:8)
COFA	660	Advanced scientific writing	2
CHEM	641	Advanced Biochemistry II	3
ANSC	650	Precision Diet Formulation	2
ANSC	655	Metabolism of Vitamins & Minerals	2
ANSC	660	Applied Animal Breeding Strategies	3
ANSC	670	Mammalian Endocrinology	2
ANSC	720	Applied Animal Genomics	2
Part 4: Q	ualificat	ion Requirements	
			(Required Credit Hours:0)
ANSC	800	Comprehensive Exam	0
ANSC	810	Research Proposal	0
Part 5: R	esearch l	Requirements	
			(Required Credit Hours:30)
ANSC	900	Dissertation Research	30
ANSC	910	Dissertation Defense	0

College of Humanities and Social Sciences

Department of Cognitive Sciences

Master of Science in Clinical Psychology

Description

The Department of Psychology & counseling offers a Master of Science degree in Clinical Psychology. The need for qualified clinicians and mental health professionals to serve the community necessitated the establishment of this program. The Master of Science program is designed to provide proper training for Masters level psychologists to work in a variety of clinical settings including hospitals, schools, public agencies, and private practice. It also provides a foundation for students interested in pursuing advanced doctoral studies. The program focuses on the field of clinical psychology. The curriculum is structured to enable students pursue a plan of study to assure increased professional competence and breadth of knowledge in the field of clinical psychology. This program requires 39 semester hours of study, including two practicum courses (600 clock hours) of supervised practicum experience in an approved mental health or rehabilitation setting.

Program Objectives

- 1. To provide students with advanced knowledge of current developments in clinical psychology.
- 2. To train students on the application of clinical knowledge to solve psychological problems.
- 3. To train students to act independently in planning and implementing tasks at a professional level.
- 4. To enable students to communicate clinical issues and conclusions clearly to all parties involved.
- 5. To provide students with knowledge that enables them to conduct clinical research under minimal supervision.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate clinical knowledge that is culturally sound and relevant to professional and ethical practices in the field of mental health.
- 2. Conduct proper psychological assessment.
- 3. Diagnose successfully clients' clinical problems using DSM/ ICD.
- 4. Create suitable treatment plans for diverse psychological disorders.
- 5. Apply therapeutic skills to help clients (individuals and groups) overcome their psychological disorders.
- 6. Communicate comprehensive and understandable psychological reports to all parties involved.
- 7. Apply appropriate methodology to conduct research in clinical psychology.

Degree Requirements:

Department of Geography and Urban Sustainability

Master of Science in Remote Sensing and Geographic Information Systems

Description

The Remote Sensing and Geographic Information Systems Master of Science Program at UAE University is the first of its kind in the region. It is designed to provide you with the theoretical background and practical skills to start or advance your career in remote sensing and GIS. Our curriculum has been specifically developed to suit students from diverse academic backgrounds and professional occupations. No prior remote sensing or GIS experience is required to excel in the program. (Total credit hours is 30 for theses and 34 for no-theses).

Program Objectives

- 1. Discuss the theoretical background and practical skills for a career in Remote Sensing or GIS.
- 2. Identify the recent advances in Remote Sensing, GIS and GNSS relating that with scientific research and its role in the society.
- 3. Apply analytical and spatial thinking skills needed for successful use of remote sensing and GIS in solving spatial problems.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Discuss the theoretical principles of remote sensing and GIS and their role in modeling and solving environmental, urban and social issues.
- 2. Recognize advanced analysis and interpretation skills needed in remote sensing and GIS.
- 3. Apply practical remote sensing and GIS procedures for assessing and solving environmental, urban, geologic and societal problems.

- 4. Communicate remote sensing and GIS related ideas and results both orally and in writing.
- 5. Develop remote sensing and GIS project management, team work and leadership skills.
- 6. Produce scientific research related to the applications of remote sensing and GIS.

D 4.6			irse Credits
	Sensing and Courses	d GIS	
requiree	Courses	(Required Credi	t Hours:18)
RGIS	601	Principles of Remote Sensing	2
RGIS	602	Fundamentals of GIS	3
RGIS	603	Digital Image Processing in RS	3
RGIS	604	Spatial Analysis Using GIS	3
RGIS	605	Local & Web Based Services GIS	2
RGIS	606	Database Management Systems	2
RGIS	607	Seminar on Management Issues in RS&GIS	1
STAT	661	Geo-Statistics	2
Elective	Courses	6CH for Thesis entire and 12CH for Non-Thesis entire	
Elective	Courses -	6CH for Thesis option and 12CH for Non-Thesis option (Required Credi	t Hours:12)
BIOE	625	Coastal Management	2
RGIS	610	Spatial Data Collection	2
RGIS	611	Advanced Remote Sensing	2
RGIS	612	Satellite Positioning	2
RGIS	613	Software Engineering for GIS	2
RGIS	614	Selected Topics	2
RGIS	615	Project Management	2
RGIS	616	Transport Applications of GIS	2
RGIS	617	Urban and Environmental Applications of Remote sensing and GIS	2
RGIS	618	Remote Sensing and GIS for Petroleum	2
		Соц	rse Credits
	Capstone		
Required	d Courses	(Min CH:4 and Max CH:6)	l:4 II()
RGIS	620 *	Capstone (Required Cred	Hours:6)
RGIS	630 **	Thesis	6
MOD	030	* Required for Non-Thesis	0

** Required for Thesis

Department of Government and Society

Master of Governance and Public Policy

Description

The Master of Governance and Public Policy (MGPP) degree aims to impart knowledge, skills, and analytic capability about the rational application of methods, practical tools and techniques in public governance including the formulation, implementation, and evaluation of public policy in the dynamic and complex era of globalization. The Program combines relevant contemporary theories, professional skills, practical knowledge, high level research skills and critical thinking to approach the questions of governance and policy management in the new millennium. The MGPP equips students with cutting-edge skills to undertake open, accountable, responsive, and inclusive leadership to address the administrative, ethical, financial, organizational, and political challenges in delivering superior governmental services and making effectual decisions.

Program Objectives

- 1. To prepare professionals and public policy leaders to discuss, analyze, and evaluate public policies.
- 2. To appreciate the complex and cross-sectorial nature of public policy, public policy challenges, and public policy solutions.
- 3. To implement skills necessary to address important criteria of transparency, accountability, responsive, effectiveness, efficiency, and inclusive in all policy processes.
- 4. To develop leadership skills necessary to lead national and local institutions and perform administrative, financial, organizational, and political activities.
- 5. To exercise ethical and moral standards in public policy processes and leadership behaviors.
- 6. To equip students with various analytical tools to effectively diagnose and proffer solutions to complex public policy issues .

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Comprehend selected theories and methods in public governance, policy analysis, market-government relations, macro and micro economics, public budgeting, leadership, and research in the analysis and formulation of public policy.
- 2. Conduct governance and public policy research using appropriate research methods, ethics procedures, and statistical analysis
- 3. Apply qualitative and quantitative skills in the formulation of public policy independently and in teams.
- 4. Use different tools and techniques in policy analysis, stakeholder management, successful policy implementation, effective program evaluation, and financial management
- 5. Communicate descriptive and analytical knowledge effectively in written and oral format to various audiences.
- 6. Demonstrate preparedness for continued reflective practice and lifelong learning in public policy and governance.

Degree Requirements:Total Credit Hours: 36

Governance and Public Policy						
Required	d Courses					
		(Required Credi	t Hours:24)			
ECON	541	Economics for Policy Analysis	3			
ECON	544	Financial Management and Public Budgeting	3			
PSG	501	Public Policy Analysis Theory & Practice	3			
PSG	504	New Public Man & Governments	3			
PSG	505	Research Methods for Political Analysis	3			
PSG	517	Government, Leadership, & Pubic Management	3			
PSG	518	Public Policy Design and Tools	3			
PSG	527	Seminar in Government & Public Policy in the UAE	3			
Elective	Courses					
DG G		(Required Cred	•			
PSG	513	Globalization, International Agencies & Public Policy	3			
PSG	521	Environmental Policy & Sustainable Development Management	3			
PSG	522	Implementation, Evaluation & Monitoring of Strategic Issues	3			
PSG	526	Comparative Political Institutions	3			
		Cou	ırse Credits			
Thesis						
Required	d Course					
		(Required Cred	lit Hours:6)			
PSG	699	Master Degree Thesis	6			

Department of Social Wellbeing

Master of Social Work

Description

Master of Social Work (MSW) programs prepare graduates for advanced professional practice in an area of concentration. The MSW program will prepare UAEU graduates to enter the job force as specialized practitioners, accepting leadership roles within the areas of health/mental health, criminal justice, applied research, policy analysis, community education, schools and in the planning and provision of social services in other areas. The Master of Social Work consists of 30 credit hours of specialized course-work and practicum for students with a Bachelor degree in Social Work (BSW). The MSW program also welcomes students with a bachelor degree in disciplines other than social work. However, for these students, the program of study will consist of foundation courses (30 credit hours) in year 1 and specialization courses (30 credit hours) in year 2 for a total of 60 credits hours.

Program Objectives

- 1. Practice in accordance with social work values and ethics that acknowledge the history and laws of UAE society.
- 2. Practice in a culturally competent manner that promotes quality of life and well-being, human rights and social and economic justice, with diverse Arab, Muslim and expatriate populations of the UAE and GCC.
- 3. Use, produce and apply research knowledge to enhance their skills for practice with the diverse Arab/Muslim families, children, individuals, groups, organizations, communities, and societies of the UAE and GCC.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Use communication/facilitation skills ethically in building empowering relationships with the diverse populations in the UAE, the Arab Gulf and internationally.
- 2. Employ skills for influencing policy formulation and change in communities that advance social and economic justice.
- 3. Apply knowledge and leadership skills in managing projects, and working with community groups and/or organizations to address populations at risk and engage in community resource development
- 4. Demonstrate skills in quantitative/qualitative research design, data analysis, program evaluation, practice evaluation, community needs assessments, and knowledge dissemination.
- 5. Apply the knowledge, values, ethical principles, and skills of a generalist social work perspective to practice with diverse social systems in the UAE, the Arab Gulf and internationally.
- 6. Analyze social policies at a local, regional, national, and international level.
- 7. Evaluate existing research studies and one's own practice interventions.
- 8. Function within the structure of organizations and service delivery systems and seek necessary organizational change.

Total Credit Hours: 30

Degree Requirements:

College of Information Technology

Department of Information Systems and Security

Master of Science in Information Security

Description

The Master of Science in Information Security program, offered by the College of Information Technology, is designed to develop expertise in leadership and operations in the area of information security. The program is geared towards meeting the growing need for information technology specialists in information security. The program provides graduates with depth courses designed to enhance their skill set and knowledge in information security as well as breadth information technology courses. The program provides the needed technical and managerial expertise to plan, acquire, operate, manage and evaluate an organization's information security system of operations. Students enrolled in this program are expected to pursue a plan of study to assure professional competence and breadth of knowledge in the field of information security. The emphasis of this specialization is on applying proven and innovative practices for building industry-standard secure systems, applications and networks. This program is for highly motivated groups of working professionals and recent Bachelor's degree graduates. The program is designed to impart knowledge and develop the skills needed to meet current and future information security needs of the government and corporate organizations, as well as preparing students to pursue a Ph.D. in information security or related areas.

Program Objectives

- 1. Identify and effectively use techniques and tools necessary in information security practice;
- 2. Develop project management and leadership skills to secure enterprise IT architectures;
- 3. Apply security principles, legal and ethical responsibilities to the development, and deployment of information security policies;
- 4. Improve skills and expand knowledge for life-long learning and professional growth;
- 5. Comply with international information security standard and local regulatory policies.

Program Learning Outcomes

- 1. Apply information security knowledge and effective security strategies and standards.
- 2. Design effective security solutions based on given requirements.
- 3. Evaluate in depth enterprise security systems.
- 4. Execute ethically project work or research that contributes significantly to the information security discipline.
- 5. Demonstrate advanced oral and written communication skills individually and collectively.
- 6. Analyze critically emerging information security concepts, models, techniques, and solutions.

Degree	Require	ments:	Total Credit Hours: 30
			Course Credits
College of	of Informa	ation Technology	
Require	d Courses		
			Required Credit Hours:9)
ITCO	601	Current Emerging Trends in Information Technology	3
ITCO	602	Management and Leadership in Information Technolog	<u>3</u>
ITCO	603	System Analysis, Modeling & Design	3
			Course Credits
Informat	tion Secur	ity	
Require	d Courses	S	
		(R	equired Credit Hours:12)
SECB	621	Information Security Fundamentals	3
SECB	622	Advanced Network Security	3
SECB	623	Cryptography and Secure Communications	3
SECB	624	Software Security	3
Elective	Courses	- 3CH for Thesis option and 6CH Non-Thesis option	
		(Req	uired Credit Hours: 3 - 6)
ECBP	614	Mobile Commerce	3
SECB	626	Secure Electronic Commerce	3
SECB	627	Ethics, Law and Policy in Cyberspace	3
SECB	628	Computer Crimes and Forensics	3
ITPG	698	Special Topics in Information Technology	3
			Course Credits
Project of		s chosen, an additional elective will need to be taken for 3 CH)	
Thesis C	Option		
			Required Credit Hours:6)
ITPG	699	Research Thesis	6
Project (Option		
			Required Credit Hours:3)
ITPG	690	Practicum Project	3

Master of Science in Information Technology Management

Description

The College of Information Technology offers the Master of Science in Information Technology Management program that produces graduates who have a thorough understanding of information systems and technologies along with relevant management, communication, and decision-making skills. Students learn how to integrate information systems technology expertise and management skills to effectively implement organizational solutions. This combination of advanced technical knowledge and management skills with organizational strategy put graduates of this program in a position to succeed as IT leaders and technical experts.

Program Objectives

- 1. Develop in depth knowledge in information systems and technologies.
- 2. Integrate information systems technology expertise and management skills to effectively implement organizational solutions.
- 3. Lead IT projects and take a major role in building tomorrow's economy.
- 4. Improve their skills and expand their knowledge for life-long learning and professional growth.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate advanced understandings of the complex body of knowledge that involve the different IT management approaches.
- 2. Evaluate in depth enterprise architectures for developing and delivering products and services to the marketplace.
- 3. Develop ethically project work or research that contributes significantly to the current business needs and compliant with cutting-edge technology.
- 4. Develop enterprise-wide IT management skills and expand the knowledge for lifelong learning and professional development.
- 5. Critically analyze, synthesize, and make use of management information to solve complex IT management problems
- 6. Demonstrate advanced oral and written communication skills in a teamwork environment.

Degree Requirements:Total Credit Hours: 30

			Course Credits
College	of Informa	ation Technology	
Require	d Courses	S	
		(Requi	red Credit Hours:9)
ITCO	601	Current Emerging Trends in Information Technology	3
ITCO	602	Management and Leadership in Information Technology	3
ITCO	603	System Analysis, Modeling & Design	3
			Course Credits
Informa	tion Techi	nology Management	
Require	d Courses		
			ed Credit Hours:12)
ISBP	631	Information Systems Management	3
ISBP	632	Applied Data Mining	3
ISBP	634	Enterprise Computing	3
ISBP	635	Knowledge Management	3
Elective	Courses	- 3CH for Thesis option and 6CH for Non-Thesis option	
		(Required)	Credit Hours: 3 - 6)
ISBP	633	Managing the IT Venture	3
ISBP	636	IT Legislation	3
ISBP	637	E-Governance	3
ITPG	698	Special Topics in Information Technology	3
			Course Credits
Project of		s chosen, an additional elective will need to be taken for 3 CH)	
` •			

6

3

(Required Credit Hours:3)

Research Thesis

Practicum Project

ITPG

ITPG

Project Option

699

690

Doctor of Philosophy (PhD) Concentration: Information Security

Description

The Doctor of Philosophy (Ph.D.) with Concentration in Information Security is available for high caliber individuals who are able to develop and implement their own research studies. The program provides students with the knowledge and ability to conduct applied and basic research towards the development of novel solutions to substantive information security research problems from academia, government and Industry. In addition to conducting rigorous research, students are expected to complete a set of course work and pass all required examinations.

Program Learning Outcomes

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Total Credit Hours: 54

Degree Requirements:

Doctor of Philosophy (PhD) Concentration: Information Technology

Description

The PhD degree in IT is a research-oriented program fostering research contributions on the area of Information Technologies and related fields. Examples of these areas include: information management, digital ecosystems, digital economy, enterprise systems, knowledge management, IT innovation, IT strategies, cloud computing, and emerging technologies. Students are expected to develop and gain a solid understanding of the underlying state of the art information technologies and their associated theoretical principles. Upon graduation, our students acquire a solid knowledge on IT, which make them capable of independent work and well prepared to be IT scholars.

Program Learning Outcomes

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree l	Requiren	Total Credit Hours: 54	
			Course Credits
Program	Requirem	nents:	
Part 1: G	eneral Re	equirements	
			(Required Credit Hours:12)
ITPG	701	Advanced Design & Analysis of Algorithms	3
ITPG	709	Modeling, Simulation & Performance Evaluation	3
ITPG	713	Data Mining & Statistical Analysis	3
ITPG	602	Research Methods in Information Technology	3

		tion Requirements the following courses.)	
			(Required Credit Hours:9)
CEPG	701	Advanced Computer Architecture	3
CEPG	702	Failure Mechanisms and Reliability	3
NEBP	701	Advanced Networking	3
NEBP	704	Design and Analysis of Networks	3

SWEB	701	Complex Software systems	3
SWEB	702	Software Engineering	3
CSPG	704	Elements of Artificial Intelligence	3
CSPG	705	Intelligent Agents & Semantic	3
CSPG	706	Big Data Analytics and Cloud Computing	3
SECB	701	Policy Criteria and Evaluations of IT Systems	3
SECB	703	Privacy and Database Systems Security	3
ITPG	797	Special Topics in IT	3

Part 3: Elective Requirements

Upon the approval of the student's Advisory Committee, the student may take any 3 CH 600 to 800 level course from any approved graduate program at UAEU, except for special topics and Master degree core courses offered by CIT.

(Required Credit Hours:3)

Part 4: Qualification Requirements				
			(Required Credit Hours:0)	
ITPG	800	Comprehensive Exam	0	
ITPG	810	Research Proposal	0	

Part 5: Research Requirements				
			(Required Credit Hours:30)	
ITPG	900	Dissertation Research	30	
ITPG	910	Dissertation Defense	0	

Department of Computer Science and Software Engineering

Master of Science in Software Engineering

Description

The Master of Science in Software Engineering offered by the College of Information Technology is designed to develop technical and managerial expertise in software engineering. The program focuses on meeting the growing needs for software engineers. Students acquire solid foundations in theory and practice in software engineering, with in-depth exposure to the state-of-the-art in software development processes, methodologies, and tools. The program is designed to impart knowledge and develop the skills needed to meet current and future information technology needs of government and corporate organizations, as well as to prepare students for Ph.D. degree programs in IT and related areas. Teamwork is emphasized throughout the curriculum to provide students with essential skills to be successful software engineering professionals. The program is intended for highly motivated groups of working professionals and recent Bachelor's degree graduates.

Program Objectives

- 1. Assume leadership roles to promote professional and organizational goals that address the needs of the community;
- 2. Uphold and apply the principles of professional and ethical responsibilities to the design, development, and deployment of computing artifacts;
- 3. Maintain professional competency in light of the advancements in the related disciplines, and develop professionally through continuing training and advanced education in response to changes in roles and responsibilities;
- 4. Contribute to the body of novel software products, services, and knowledge;
- 5. Collaborate professionally within or outside of their disciplines at national and international levels.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Apply software engineering knowledge to build robust, reliable, and maintainable software.
- 2. Design complex systems based on efficiency, cost and data availability.
- 3. Evaluate in depth the relative merits of software systems and artifacts at different levels of system architecture.
- 4. Analyze Critically emerging software models, techniques, and technologies.
- 5. Execute ethically project work or research that contribute significantly to Software Engineering discipline.
- 6. Demonstrate advanced oral and writing communication skills individually and collectively

Total Credit Hours: 30

			Course Credits
College of	f Informa	tion Technology	
Required	Courses	3	
		(Require	d Credit Hours:9)
ITCO	601	Current Emerging Trends in Information Technology	3
ITCO	602	Management and Leadership in Information Technology	3
ITCO	603	System Analysis, Modeling & Design	3
			Course Credits
Software	Engineer	ing	
Required	Courses		
			Credit Hours:12)
SWEB	651	Software Construction	3
SWEB	652	Requirements Engineering	3
SWEB	653	Software Testing & Quality Assurance	3
SWEB	654	HCI and Usability	3
Elective	Courses	- 3CH for Thesis option and 6CH for Non-Thesis option	
		(Required Cr	redit Hours: 3 - 6)
SWEB	655	Web Applications	3
SWEB	656	Special Topics in Software Engineering	3
SWEB	657	Embedded Software	3
ITPG	698	Special Topics in Information Technology	3
			Course Credits
Thesis or (If Projec		s chosen, an additional elective will need to be taken for 3 CH)	
Thesis O	ntion		

6

3

(Required Credit Hours:3)

ITPG

ITPG

Project Option

699

690

Research Thesis

Practicum Project

Doctor of Philosophy (PhD) Concentration: Computer Science

Description

The Ph.D. program with a concentration in computer science is to advance the state of the art in any area of computer science. The program covers an overall perspective of the field structure and problems. Students study at least one subfield in considerable depth, and contribute to the creation and consolidation of knowledge in that subfield through creative research. In addition, the program prepare students to be able to understand, formalize, and analyze new theoretical and/or practical problems in different areas within subfields of computer science or in the intersection of computer science and other disciplines. The University awards the Ph.D. degree in recognition of high-quality academic research that represents an original contribution to the field of computer science.

Program Learning Outcomes

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Doctor of Philosophy (PhD) Concentration: Software Engineering

Description

The Ph.D. degree in Software Engineering is geared toward individuals interested in conducting long-term research in the spectrum of intellectual activity in Software Engineering. The program emphasizes on providing a high quality, leading-edge education on Software Engineering that produces highly capable and sought after researchers and professional leaders. The degree is awarded in recognition of high quality academic research that represents original contribution to the field of Software Engineering.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree Requirements:Total Credit Hours: 54

Program Requirements:

Part 1: General Requirements			
			(Required Credit Hours:12)
ITPG	701	Advanced Design & Analysis of Algorithms	3
ITPG	709	Modeling, Simulation & Performance Evaluation	3
ITPG	713	Data Mining & Statistical Analysis	3
ITPG	602	Research Methods in Information Technology	3

Part 2: Concentration Requirements (Any 9 credits of the following courses.)

			(Required Credit Hours:9)
SWEB	701	Complex Software systems	3
SWEB	702	Software Engineering	3
SWEB	703	Advanced Software Architecture and Design	3
SWEB	704	Software Maintenance, Evolution, and Re-Engineerin	g 3
ITPG	797	Special Topics in IT	3

Part 3: Elective Requirements

(Upon the approval of the student's Advisory Committee, the student may take any 3 CH 600 to 800 level course from any approved graduate program at UAEU, except for special topics and Master degree core courses offered by CIT.)

(Required Credit Hours:3)

Part 4: Q	ualificati	on Requirements	
			(Required Credit Hours:0)
ITPG	800	Comprehensive Exam	0
ITPG	810	Research Proposal	0
Part 5: R	esearch R	Requirements	

Part 5: Research Requirements				
			(Required Credit Hours:30)	
ITPG	900	Dissertation Research	30	
ITPG	910	Dissertation Defense	0	

Department of Computer and Network Engineering

Doctor of Philosophy (PhD) Concentration: Network Engineering

Description

The Doctor of Philosophy (PhD) degree in Network Engineering enables students to engage in independent, high-quality research and academic teaching. It provides research-oriented graduate study and professional specialization in Network Engineering and emphasizes both scholarly and applied research. To earn a PhD degree, a student must demonstrate breadth of knowledge, mastery of a specialized field, pass a comprehensive examination, and completes original research culminating in the written dissertation, revealing high critical ability and powers of imagination and synthesis. In addition, the student must demonstrate his/her ability to do original research and superior scholarship, as demonstrated by a public dissertation defense and publication in established peer-reviewed academic conferences and/or journals

Program Learning Outcomes

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

0

ITPG

910

Dissertation Defense

Doctor of Philosophy (PhD) Concentration: Computer Engineering

Description

The PhD students in Computer Engineering (CE) go through a research-oriented study of the breadth of the field. The students produce and disseminate knowledge of CE during the their degree program. He/she with the help of a faculty advisor outlines an academic and research program that is consistent with their backgrounds and is the most appropriate for the student's academic goal. The areas of research include but are not limited to: VLSI and FPGA design, CAD of VLSI, placement and routing, computer architecture, parallel and distributed systems, reliability and fault tolerance, testing and fault diagnosis.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree Requirements:Total Credit Hours: 54

Program 1	Requiren	nents:	
Part 1: G	eneral Re	equirements	
		(Required	Credit Hours:12)
ITPG	701	Advanced Design & Analysis of Algorithms	3
ITPG	709	Modeling, Simulation & Performance Evaluation	3
ITPG	713	Data Mining & Statistical Analysis	3
ITPG	602	Research Methods in Information Technology	3
		tion Requirements the following courses.)	
		(Required	d Credit Hours:9)
CEPG	701	Advanced Computer Architecture	3
CEPG	702	Failure Mechanisms and Reliability	3
CEPG	703	High-Performance Microprocessor Architecture	3
CEPG	704	Advanced Digital Design	3
CEPG	705	ASIC Design	3
CEPG	706	Advanced VLSI / Nano-electronics	3
CEPG	797	Special Topics in Computer Engineering	3
(Upon the	e approvarse from	equirements al of the student's Advisory Committee, the student may take any approved graduate program at UAEU, except for special topic es offered by CIT.)	
			d Credit Hours:3)
Part 4: Q	ualificati	on Requirements	
		, 1	d Credit Hours:0)
ITPG	800	Comprehensive Exam	0
ITPG	810	Research Proposal	0
Part 5: Ro	esearch F	Requirements	
		(Required	Credit Hours:30)
ITPG	900	Dissertation Research	30
ITPG	910	Dissertation Defense	0

College of Law

Doctor of Philosophy in Law

Description

The awarded degree in recognition of the completion of the requirements of this program is "Doctorate of Philosophy in Law", and it will be offered in Arabic. However, there will be an opportunity for the students to specialize in one branch of law through the elective courses studied and the subject of the dissertation which they will argue/defend. The Program will be offered at UAEU in Al Ain campus.

Program Objectives

- 1. Develop scholarly inquiry grounded in research and the reality of practice in the field of law.
- 2. Offer a rigorous and innovative discipline-based knowledge that prepares students to succeed in a globally challenging, competitive and changing environment.
- 3. Enhance professional growth, lifelong learning skills and leadership competencies in the area of specialization for career opportunities in different sectors.
- 4. Adhere to professional integrity and research ethics, and be committed to values related to the field of law.
- 5. Prepare graduates to be inquisitive, to reason critically, and to communicate clearly and effectively.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Compare the Legislative, Jurisprudential and Judiciary trends in the field of specialization.
- 2. Criticize legal provisions, jurisprudential opinions and judicial trends in the UAE and comparative legal systems.
- 3. Undertake research that includes knowledge in the field of specialization.
- 4. Communicate the key concepts in the field of specialization using appropriate language.
- 5. Develop innovative solutions for contemporary legal issues.
- 6. Express commitment to the relevant ethical and professional rules in the field of law.
- 7. Lead a team to provide solutions for the relevant legal issues

Course Credits

Required C	ourses		(Required Credit Hours:12)
LAW 7	700	Quantitative and Qualitative Research Methods	3
LAW 7	701	Advanced Legal Research: Writing and Presentation	on 3
LAW 7	702	Selected Legal Readings - E	3
LAW 7	703	Advanced Studies in Comparative Legal Systems	3
Part 2: Elect (12 Cr. Hrs i	_	nirement g at least 9 Cr. Hrs. of courses taught in English)	
First Group	: Public	Law	(Required Credit Hours:12)
PUBL 7	705	Criminal Law	3
PUBL 7	706	Administrative Law	3
PUBL 7	709	Public International Law - E	3
PUBL 7	710	Criminal Procedure Law- E	3
PUBL 7	713	International Crimes and Judicial System - E	3
PUBL 7	714	Constitutional Law - E	3
PUBL 7	715	Contemporary Crimes- E	3
Second Gro	oup: Priv	vate Law	(Required Credit Hours:12)
PRVT 7	707	Civil Law	3
PRVT 7	708	Commercial law	3
PRVT 7	711	Civil Procedures Law - E	3
PRVT 7	712	Companies Law and Investment Legislation - E	3
PRVT 7	716	Real-Estate Legislation- E	3
PRVT 7	717	Private International Law- E	3
PRVT 7	718	Securities and their Governing Legislation - E	3
Part 3: Qual	lification	Requirements	
Comprehen	sive Ex	amination	(Required Credit Hours:0)
LAW 8	800	Comprehensive Examination	0
Part 4: Rese	arch Red	quirements	
Dissertation	n Resear	rch	
			(Required Credit Hours:36)
LAW 9	900 *	Dissertation Research	36
		* 12 Credit Hours per semester	

Description

The public law specialty emphasizes the laws related to the state, as sovereign state, such as Criminal Law, Administrative Law, International Law, and Constitutional Law. The program is designed to enhance the graduates' professional skills, their abilities to think critically, to analyze legal arguments, to articulate ideas, to research efficiently, to write effectively, and to support the college's academic position as a remarkable university within the UAE and abroad

Program Objectives

- 1. Build and develop in depth a solid and advanced scientific base of knowledge in public law among the students.
- 2. Enable students to conduct in depth researches and specialized legal studies in different areas of public law.
- 3. Develop creativity and an advanced continuous knowledge in the field of Public Law.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Analyze cases and legal texts in a correct scientific manner.
- 2. Criticize jurisprudential and judicial view points and trends in general, and within the UAE legal system in particular.
- 3. Conduct in depth a legal research in the field of public law, and analyzes the findings, in accordance with the correct scientific methodologies.
- 4. Lead a team work to solve relevant legal problems.
- 5. Present his/her scholarly activity orally in a correct scientific manner.
- 6. Demonstrate self-learning skills with regard to real and novel issues.
- 7. Undertake his/her duties professionally in accordance with ethical principles.

remen	ts:
ıcı	псп

Total Credit Hours: 31

Course Credits

Program Requirements
Part 1: Core Requirements

Required Courses

			(Degrand Card's II 10)
			(Required Credit Hours:18)
PUBL	630	Advanced Studies in Criminal Law	3
PUBL	631	Advanced Studies in Constitutional Law	3
PUBL	633	Advance Studies in International Criminal Law	3
PUBL	634	Advanced Studies in Criminal Procedures	3
PUBL	635	Advanced Studies in Administrative Law	3
LAW	666	Legal Research	3
			Course Credits
Part 2: E	lective Re	quirements (Req. CH:6)	
Group 1:	: Arabic (Courses	
			(Required Credit Hours:3)
PUBL	637	Advanced Studies in Administrative Contracts	3
PUBL	640	Advanced Studies in Criminal Law-Specific Crimes	3
Group 2:	: English	Courses	
			(Required Credit Hours:3)
PUBL	639	Human Rights (E)	3
PUBL	638	International Relations & Organizations(E)	3
			Course Credits
Part 3: R	esearch R	equirements	
Required	d Courses		
			(Required Credit Hours:7)
PUBL	636	Thesis	7

Department of Private Law

Master of Private Law

Description

Private Law is the branch of law that deals with the relations between individuals or institutions, rather than relations between these and the state. This specialty attracts the law graduates who are looking to get recruited in trading companies, law firms, economic establishments, and the judiciary. The program aims at providing graduates with adequate research and professional skills through focusing on financial transactions between individuals whether it be civil or commercial transactions.

Program Objectives

- 1. Build and develop in depth a solid and advanced scientific base of knowledge in private law among the students.
- 2. Enable students to conduct in depth researches and specialized legal studies in different areas of private law.
- 3. Develop creativity and an advanced continuous knowledge in the field of Private Law.
- 4. Provide students with the highest values and ethics necessary for the exercise of the legal profession.

Total Credit Hours: 31

Program Learning Outcomes

- 1. Analyze cases and legal texts soundly and scientifically.
- 2. Compare jurisprudence, various judicial and legislative trends, especially in the UAE legal system.
- 3. Undertake in-depth scientific research in a field of the Private Law utilizing curriculum-based legal research methods and drawing from scientific sources.
- 4. Present legal arguments in a sound and proper manner.
- 5. Perform tasks assigned to him/her in a professional and ethical manner
- 6. Lead a teamwork to solve relevant legal problems.

Program Requirements Part 1: Core Requirements

Required Courses			
			(Required Credit Hours:18)
PRVT	600	Advanced Studies in Civil Law	3
PRVT	601	Advanced Studies in Commercial Law	3
PRVT	603	International Trade Contracts (E)	3
PRVT	604	Alternative Dispute Resolution (E)	3
PRVT	611	Advanced Studies in Civil Procedure	3
LAW	666	Legal Research	3

Course Credits

Part 2: Elective Requirements (Req. Ch:6)

First Group: Arabic Courses				
			(Required Credit Hours:3)	
PRVT	605	Modern Finance Transactions in Islamic Law	3	
PRVT	609	Advanced St.In Prvt.Int. Law	3	
PRVT	612	Advanced Studies in Insurance	3	
PRVT	613	Advanced Studies in Intellectual Property	3	

Second Group: English Courses				
			(Required Credit Hours:3)	
PRVT	607	World Trade Agreements (E)	3	
PRVT	608	E-Commerce (E)	3	
PRVT	610	Legal System for Economic Activity in Free Zones (E	3	

Course Credits

Part 3: Research Requirements

Required	Courses	S	
			(Required Credit Hours:7)
PRVT	606	Thesis	7

College of Medicine

Master of Medical Sciences

Description

The Master of Medical Sciences programs are designed to cater to the needs and aspirations of individual students, the expressed needs of the relevant institutions in the UAE, and the current strengths in different disciplines in the CMHS. Currently the structure of the M. Med. Sc. curriculum is organized into three tracks: "Microbiology & Immunology", "Pharmacology and Toxicology" and "Biochemistry and Molecular Biology (BMB)". 1- Biochemistry & Molecular Biology The Biochemistry and Molecular Biology tack is a multi-disciplinary program which provides students with a foundation in Biochemistry and Molecular and Cellular Biology as well as intensive state-ofthe-art laboratory research training. Research areas in the Biochemistry Department focus on the Biochemical, Molecular and Cellular basis of human diseases including Cancer Biology, Diabetes, and Neurodegenerative disorders, in addition to areas in Gene Regulation, Bioinformatics, Proteomics, Epigenetic, Signal Transduction, Oxidative Stress, Mitochondrial Dysfunction, and Immunology and Biochemical Toxicology. 2- Microbiology & Immunology The Microbiology and Immunology track provides students with core knowledge at the respective levels in basic immunology, the pathogenesis of autoimmune and infectious diseases, the molecular details of hostpathogen interactions, the molecular biology and molecular epidemiology of selected pathogens, and the genetic manipulation of pathogens. 3- Pharmacology & Toxicology The Department of Pharmacology and Therapeutics offers a multidisciplinary program designed to prepare highly qualified individuals to be successful scientists in academic and industrial biomedical research. The pharmacology and toxicology faculty members carry out research in cancer pharmacology, neuropharmacology, cardiovascular pharmacology, drug metabolism, toxicology, proteomics, molecular pharmacology, receptors and signal transduction, and drug design.

Program Objectives

- 1. Biomedical Knowledge.
- 2. Interpersonal & Communication Skills.
- 3. Scholarly Research.
- 4. Professionalism and ethics.
- 5. Publications and presentations.

Program Learning Outcomes

- 1. Apply the knowledge of biomedical sciences in their scholarly activities.
- 2. Demonstrate communication skills (with peers and colleagues) that are effective in the exchange and translation of knowledge and information.
- 3. Apply professional ethics and commitment to their scholarly activities.
- 4. Engage in collaborative health science research.
- 5. use quantitative and qualitative methods present and defend their scientific research findings

Degree I	Requirem	ents:	Total Credit Hours: 36
			Course Credits
Master of	Medical S	cience Major	
Required	Courses		
			(Required Credit Hours:10)
ETHC	600	Ethical Conduct in Medical Research	1
JRC	601 *	Biomedical Sc Journal Club 1	1
PRR	600	Principles of Research	1
SEM	601 *	Biomedical Sciences Seminar I	1
STA	600	Biostatistics & Experimental Design	2
		* Taken 3 Times	
Electives	Courses	(6CH for BM, PT tracks and 8CH MI track)	
			Required Credit Hours: 6 - 8)
Research	Courses		(D. 1.1C. 1.11. 12)
			(Required Credit Hours:12)
		olecular Biology Track	
Required	Courses		(Required Credit Hours:8)
BMB	601	Techniques in Biochemistry	2
BMB	602	Advanced Molecular Biology	3
BMB	603	Advanced Cell Biology	2
BMB	604	Advanced Topics in Biochemistry	2
Required		nmunology Track	
required	Courses		(Required Credit Hours:6)
MMIM	601	Molecular Bacteriology – Gene, Structure, Pathogo	enesis 2
MMIM	602	Principles of Cellular and Molecular Immunology	2
MMIM	603	Molecular Principles of Viral Replication and Path	ogensis 2
Pharmace	ology and T	Foxicology Track	
Required	Courses		
			(Required Credit Hours:8)
PHTX	601	General Systemic Pharmacology	2
PHTX	602	Molecular Mechanism of Drug Action	2
PHTX	603	Neurotransmitters in Health and Diseases	2
PHTX	604	Molecular Principles of Organ Toxicity	2

Master of Public Health

Description

The program is designed to meet the development needs of professionals working in the field of public health or related fields such as occupational health, environmental health, primary care or health promotion. It is appropriate for those working in health and social care organizations, including health authorities, government departments and health service providers such as hospitals and clinics. The course will also be appropriate for those who wish to pursue a career in academic public health or to learn more about epidemiology and statistics for research or health service evaluation. The program is part-time. The program is modular with teaching taking place during intensive courses 0830-1700 Wednesday-Saturday.

Program Objectives

- 1. History and philosophy of public health as well as its core values, concepts, functions, and leadership roles.
- 2. Population health concepts, and the processes, approaches, and interventions that identify and address the major health-related needs and concerns of populations.
- 3. Concepts, methods, and tools of public health data collection, analysis and interpretation, and the evidence-based reasoning and informatics approaches that are essential to public health practice.
- 4. Biological, environmental, socio-economic, behavioral, cultural, and other factors that impact human health, influence the global and societal burden of disease, and contribute to health disparities.
- 5. Identification and pursuit of opportunities for promoting health and preventing disease across the lifespan and for enhancing public health preparedness.
- 6. Characteristics and organizational structures of selected health care systems.
- 7. Legal, ethical, economic, and regulatory dimensions of health care and public health policy.
- 8. Public health-specific communication and social marketing, including technical and professional writing.
- 9. The cultural context of public health issues.
- 10. Globalization and sustainable development and their relationship to population health.

Program Learning Outcomes

- 1. Use advanced concepts, methods, and tools of public health data collection, analysis and interpretation.
- 2. Identify and address the major health-related needs and concerns of populations using population health concepts and methods
- 3. Analyze the biological, environmental, socio-economic, behavioral, cultural, and other factors that impact human health.
- 4. Use effective communication and strategies for promoting health and preventing disease across the lifespan.
- 5. Compare the characteristics and organizational structures of health care systems in selected countries
- 6. Explain the legal, ethical, economic, and regulatory dimensions of health care and public health policy.

CMPH

CMPH

CMPH

CMPH

628

630

633

631

Global Health

Advanced Biostatistics

Advanced Public Health

Advanced Environmental Health

2

2

2

2

Doctor of Philosophy (PhD) Concentration: Biomedical Sciences

Description

The College of Medicine and Health Sciences at UAE University provides PhD program in Biomedical Sciences and Public Health & Occupational Health. The PhD program involves conducting coursework over a period of up to 2 years, followed by a comprehensive examination evaluating the breadth and depth of the student's knowledge of his or her discipline, as well as the student's scholarly potential. Passing the comprehensive examination results in the student being recommended to advance to candidacy followed by research and the writing of a dissertation over a further three to a maximum four year period.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree Requirements:	Total Credit Hours: 54
	Course Credits

Program Requirements:

Part 1: General Requirements				
		(Required Cro	edit Hours:9)	
CMHS	701	Research and Proposal Writing Process for Doctoral Students	1	
CMHS	702	Journal Club I	2	
CMHS	703	Journal Club II	2	
CMHS	704	Journal Club III	2	
CMHS	705	Journal Club IV	2	

Part 2:	Concentration	Requirements
---------	---------------	--------------

Group 1:

Students must complete all courses (6 credits)

			(Required Credit Hours:9)
BMSC	700	Advanced Molecular Biology	3
BMSC	701	Advanced Research Techniques	3

Group 2:

3 credits from the following or any relevant 700-level courses offered by other UAEU Colleges approved by the Advisory Committee.

			(Required Credit Hours:3)
BMSC	702	Advances in General Pathology	3
BMSC	703	Microbial Pathogenesis and Host Defense	3
BMSC	704	Current Advances in Pharmacological Sciences	3
BMSC	705	Advances in Genetics	3
BMSC	706	Advanced Cancer Biology	3
BMSC	707	Medical Cell and Tissue Biology	3
BMSC	708	Advanced Topics in Neuroscience	3
BMSC	709	Advanced Pathophysiology	3

Part 3: Elective Requirements

Any 6 credits of relevant 600 level courses or above offered by the CMHS (or relevant courses offered by other UAEU colleges) approved by the Advisory Committee and have not been taken previously.

(Required Credit Hours:6)

Part 4: Qualification Requirements			
			(Required Credit Hours:0)
CMCE	800	Comprehensive Examination	0
Part 5: Re	esearch R	Requirements	
			(Required Credit Hours:30)
RSCH	900	Dissertation Research	30
RSCH	910	Dissertation Defense	0

Doctor of Philosophy (PhD) Concentration: Public Health and Occupational Health

Description

CMPH

708

Advanced Biostatistics

The College of Medicine and Health Sciences at UAE University provides PhD program in Biomedical Sciences and Public Health & Occupational Health. The PhD program involves conducting coursework over a period of up to 2 years, followed by a comprehensive examination evaluating the breadth and depth of the student's knowledge of his or her discipline, as well as the student's scholarly potential. Passing the comprehensive examination results in the student being recommended to advance to candidacy followed by research and the writing of a dissertation over a further three to a maximum four year period.

Program Learning Outcomes

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia

a	cademia	l.	
Degree 1	Require	ements:	Total Credit Hours: 54
			Course Credits
Program	Require	ments:	
Part 1: G	eneral I	Requirements	
			(Required Credit Hours:9)
CMHS	701	Research and Proposal Writing Process for Doctoral S	tudents 1
CMHS	702	Journal Club I	2
CMHS	703	Journal Club II	2
CMHS	704	Journal Club III	2
CMHS	705	Journal Club IV	2
Part 2: C	oncentr	ation Requirements	
			(Required Credit Hours:9)
СМРН	706	Advanced Public Health	2
СМРН	707	Advanced Epidemiology Methods	2

СМРН	709	Advanced Environmental Health	2
СМРН	723	Current Issues in Public Health	2
		the following courses.)	
` •		,	(Required Credit Hours:6)
СМРН	604	Health Care Evaluation and Needs Assessment	2
СМРН	605	Public Health Management	2
СМРН	607	Health Protection	2
СМРН	613	Occupational Health	2
СМРН	615	Clinical Epidemiology	2
СМРН	617	Environmental Public Health	2
СМРН	622	Chronic Disease Epidemiology	2
СМРН	620	Maternal and Child Health	2
СМРН	628	Global Health	2
СМРН	602	Biostatistics I	2
СМРН	629	Skills for Public Health Practice	2
СМРН	603	Epidemiological Methods	2
СМРН	601	Fundamentals of Public Health	2
СМРН	606	Health Promotion and Disease Prevention	2
Part 4: Q	ualificat	ion Requirements	(D. '. 1.C. 1', II. 0)
G) 1 G F	000		(Required Credit Hours:0)
CMCE	800	Comprehensive Examination	0
Part 5: R	esearch l	Requirements	
			(Required Credit Hours:30)
RSCH	900	Dissertation Research	30
RSCH	910	Dissertation Defense	0

College of Science

Department of Biology

Master of Science in Environmental Sciences

Description

The M.Sc. in Environmental Sciences is a 30 credit hour program that is offered both full and part time within the Biology Department. Students are required to complete 24 credit hours of coursework in addition to 6 credit hours assigned to research and a completion of a M.Sc. thesis. The coursework includes 4 credit hours of College of Science requirements (Ethics, Research Methods and Statistics), 10 credit hours of core environmental sciences courses and elective courses (10 credit hours) that allow the student to specialize in any specific topic relating to environmental sciences. Student progress is overseen by a research supervisor (and co-supervisors) and a thesis defense committee. The program is a fee-based program open for all students who meet the entry requirements.

Program Objectives

- 1. Develop proficiency of basic concepts in cellular and molecular biology, ecology and environmental sciences, and general biology.
- 2. Foster teamwork and improve oral and communication skills.
- 3. Foster a student-oriented research program that results in professional publications.
- 4. Embrace student-oriented teaching methods that nurture critical thinking abilities and apply their knowledge to solve theoretical and empirical real-life problems.
- 5. Prepare students for future job market and careers.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Discuss contemporary issues relating to environmental challenges, ethics, and professional responsibilities.
- 2. Describe relationships between environmental components and processes and the role of anthropogenic factors.
- 3. Evaluate material from available resources on issues and challenges relating to environmental problems facing the UAE.
- 4. Evaluate the means by which human society can conserve and restore the environment using approaches drawn from various sciences and fields of study.
- 5. Demonstrate strong written and oral presentation skills.
- 6. Conduct scientific environmental research, and use quantitative methods to analyze results.

Total Credit Hours: 30

Degree Requirements:

	C 1'
Course	Credits
Course	Cicai

			Course Credits
College o	f Science		
Required	d Courses		
COSC	501	December Mode of	(Required Credit Hours:5)
COSC	501	Research Methods	1
COSC	502	Ethics of Scientific Research	1
COSS	633	Seminar	2
STAT	503	Applied Statistics	2
			Course Credits
	nental Scie	nce	
Required	d Courses		(Required Credit Hours:9)
BIOE	611	Environmental Science I	3
BIOE	613	Environmental Science II	2
GEO	610	Social Impact Assessment	2
PUBL	655	Environmental Law	2
Elective	Courses		
			(Required Credit Hours:10)
BIOE	598	Selected Topics	1
BIOE	599	Independent Study	3
BIOE	621	Plant Research to Environmental Stresses	2
BIOE	623	Environmental Microbiology	2
BIOE	625	Coastal Management	2
BIOE	627	Desert Ecology	2
BIOE	629	Applied Systems Ecology	2
BIOE	631	Environmental Pollution & Pesticides	2
BIOE	633	Soil and Water Pollution	2
BIOE	649	Community Medicine	2
BIOE	651	Industrial Hygiene	2
BIOE	653	Human Environmental Physiology	2
BIOE	655	Essentials Of Toxicology	2
CHEM	673	Petroleum & Petrochemical Pollution	2

CHEM	674	Biochemistry of Toxins & Pollutants	2
CHEM	675	Environmental Chemistry	2
CHEM	677	Corrosion Science For Environments	2
GEOL	528	Remote Sensing	2
GEOL	565	Environmental Geochemistry	2
GEOL	574	Energy Resources	2
GEOL	575	Engineering Geology	2
			Course Credits
Thesis			
Required	Course		
			(Required Credit Hours:6)
COSR	699	Thesis	6

Master of Science in Molecular Biology and Biotechnology

Description

The M.Sc. in Molecular Biology and Biotechnology is a 30 credit hours that is offered both full- and part-time within the Department of Biology. Students are required to complete 24 credit hours of coursework in addition to 6 credit hours assigned to research and a completion of a M.Sc. thesis. The coursework includes 5 credit hours of College of Science requirements (Graduate Seminar, Ethics, Research Methods and Statistics), 10 credit hours of 4 core Molecular Biology and Biotechnology courses in addition to 9 credit hours of intercollege (College of Science and College of Medicine and Health Sciences) elective courses that allows the student to specialize in any specific topic related to Molecular Biology and/or Biotechnology. Students can take up to 6 credit hours of elective courses offered by the CMHS. Student progress is overseen by a research supervisor (and co-supervisors) and a thesis defense committee. The program is a fee-based program open for all students who meet the entry requirements.

Program Objectives

- 1. Develop proficiency of basic concepts in cellular and molecular biology, ecology and environmental sciences, and general biology.
- 2. Foster teamwork and improve oral and communication skills.
- 3. Foster a student-oriented research program that results in professional publications.
- 4. Embrace student-oriented teaching methods that nurture critical thinking abilities and apply their knowledge to solve theoretical and empirical real-life problems.
- 5. Prepare students for future job market and careers.

Program Learning Outcomes

- 1. Demonstrate leading edge knowledge in a chosen specialized area of molecular biology and/or biotechnology
- 2. Gain insight into the most significant and recent biotechnology and molecular-based methods used to expand the understanding of biology.
- 3. Manage and analyze data stored in databases, familiarize with various bioinformatics analysis tools available to analyze biological data.
- 4. Conduct scientific molecular biology and/or biotechnology research, and use quantitative methods to analyze results
- 5. Evaluate methods and results within the field of specialization critically and ethically.
- 6. Work independently or in a team on complex project that requires multidisciplinary collaboration
- 7. Communicate scientific results to both experts and general audience through writing structured reports and contributions for scientific publications and posters, and by oral presentations.

-	Requiren	Total Credit Hours: 30	
			Course Credits
College of	f Science		
Required	l Courses		
			(Required Credit Hours:4)
COSC	501	Research Methods	1
COSC	502	Ethics of Scientific Research	1
STAT	503	Applied Statistics	2
			Course Credits
		and Biotechnology	
Required	l Courses		
			(Required Credit Hours:11)
BIOM	512	Advanced Genetic Engineering	3
BIOM	516	Advanced Molecular Biology Techniques I	3
BIOM	571	Seminar in Biotechnology & Molecular Biology	1
BIOM	572	Graduate Seminar	1
BIOM	600	Advanced Molecular Biology Techniques II	3
-			
			Course Credits
Electives	Specializa	ation Courses	Course Credits
		ation Courses ake a minimum of 9CH of elective credits from COS	
Students	need to t	ake a minimum of 9CH of elective credits from COS	and CMHS
	need to t	ake a minimum of 9CH of elective credits from COS	and CMHS
Students	need to t	ake a minimum of 9CH of elective credits from COS	and CMHS (Required Credit Hours:9)
Students COS Ele	need to t	ake a minimum of 9CH of elective credits from COS purses	and CMHS (Required Credit Hours:9) (Required Credit Hours:18)
COS Ele	need to to	ake a minimum of 9CH of elective credits from COS ourses Advanced Gene Expression	and CMHS (Required Credit Hours:9) (Required Credit Hours:18)
COS Ele BIOM BIOM	need to to	ake a minimum of 9CH of elective credits from COS ourses Advanced Gene Expression Applications of Bioinformatics	and CMHS (Required Credit Hours:9) (Required Credit Hours:18) 3
COS Ele BIOM BIOM BIOM	508 524 536	Advanced Gene Expression Applications of Bioinformatics Biotechnology Applications in Forensic Science	and CMHS (Required Credit Hours:9) (Required Credit Hours:18) 3 3
COS Ele BIOM BIOM BIOM BIOM	508 524 536 640	Advanced Gene Expression Applications of Bioinformatics Biotechnology Applications in Forensic Science Molecular Physiology	and CMHS (Required Credit Hours:9) (Required Credit Hours:18) 3 3 3 3 3
COS Ele BIOM BIOM BIOM BIOM BIOM	508 524 536 640 544	Advanced Gene Expression Applications of Bioinformatics Biotechnology Applications in Forensic Science Molecular Physiology Epigenetics & Cell Different	and CMHS (Required Credit Hours:9) (Required Credit Hours:18) 3 3 3 3 3
COS Ele BIOM BIOM BIOM BIOM BIOM	508 524 536 640 544 552	Advanced Gene Expression Applications of Bioinformatics Biotechnology Applications in Forensic Science Molecular Physiology Epigenetics & Cell Different Molecular & Genetic Aspects of Plant Responses	and CMHS (Required Credit Hours:9) (Required Credit Hours:18) 3 3 4 5 To Pathogens 3
COS Ele BIOM BIOM BIOM BIOM BIOM BIOM	508 524 536 640 544 552	Advanced Gene Expression Applications of Bioinformatics Biotechnology Applications in Forensic Science Molecular Physiology Epigenetics & Cell Different Molecular & Genetic Aspects of Plant Responses	and CMHS (Required Credit Hours:9) (Required Credit Hours:18) 3 3 3 3 3
COS Ele BIOM BIOM BIOM BIOM BIOM BIOM	508 524 536 640 544 552	Advanced Gene Expression Applications of Bioinformatics Biotechnology Applications in Forensic Science Molecular Physiology Epigenetics & Cell Different Molecular & Genetic Aspects of Plant Responses	and CMHS (Required Credit Hours:9) (Required Credit Hours:18) 3 3 4 5 To Pathogens 3

MMIM	602	Cellular and Molecular Immunology	2
MMIM	603	Molecular Principles of Viral Replication and Pathogensis 2	
Thesis			Course Credits
Required	Course		
		(Re	quired Credit Hours:6)
COSR	699	Thesis	6

Doctor of Philosophy (PhD) Concentration: Cellular and Molecular Biology

Description

Ph.D. students are required to take a lab rotation-based course during their first year of graduate study. Typically, students will be required to rotate through three to 4 laboratories (minimum of 2 in exceptionally trained students), each of which lasts about three months. During each laboratory rotation, the student will be exposed to methods, equipment, and experimental procedures currently in use in a particular departmental research laboratory selected by the student and through arrangement with the professor in charge of that laboratory. At the end of each rotation, students will receive a written evaluation from by the rotation supervisor. These evaluations are then submitted to the program chair to become a part of the student's permanent file. It is important to note that these evaluation letters will be considered during the comprehensive examination evaluation.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Total Credit Hours: 54

Course Credits

Program Requirements:

Part 1: General Requirements				
			(Required Credit Hours:6)	
COSC	701	Research Methods II	2	
COSC	702	Ethics of Scientific Research II	1	
COSS	711	Seminar I	1	
COSS	722	Seminar II	1	
COSS	733	Journal Club	1	

Part 2: Concentration Requirements (6 credits)			
			(Required Credit Hours:9)
BIOM	700	Laboratory Rotations	3
BIOM	720	Advanced Genetics	3

BIOM	793	Advanced topics in Cellular and Molecular Biology: A literareview	ature 3
(Any 9 ca	redits hor	equirements urs of the following courses, or other approved graduate course o the study plan.)	s of 600 levels or
		(Requ	ired Credit Hours:9)
BIOM	630	Molecular Basis of Diseases	3
BIOM	635	Applied Immunobiology	3
BIOM	640	Molecular Physiology	3
BIOM	645	Selected Topics in Biotechnology	3
BIOM	687	Developmental Biology	3
BIOM	693	Genomics	3
Part 4: Q	ualificati	on Requirements	
		(Requ	ired Credit Hours:0)
COSC	800	Comprehensive Exam	0
COSR	810	Research Proposal	0
Part 5: R	esearch F	Requirements	
		(Requir	red Credit Hours:30)
COSR	900	Dissertation Research	30
COSD	910	Dissertation Defense	0

Doctor of Philosophy (PhD) Concentration: Ecology and Environmental Sciences

Description

Our Ph.D. program in ecology and environmental sciences equips students with skills and training in the basic and applied sciences with the objectives of improving society's understanding of environmental problems and helping manage, mitigate, and avoid those problems. The program in environmental science is a rigorous, interdisciplinary course of study. The overall objectives of the program are: (1) to clarify and improve understanding of environmental problems and to identify solutions to these problems; and (2) to foster collaborative, interdisciplinary research amongst scientists from various disciplines.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree I	Requiren	nents:	Total Credit Hours: 54
			Course Credits
Program	Requiren	nents:	
Part 1: G	eneral Re	equirements	
			(Required Credit Hours:6)
COSC	701	Research Methods II	2
COSC	702	Ethics of Scientific Research II	1
COSS	711	Seminar I	1
COSS	722	Seminar II	1
COSS	733	Journal Club	1
Part 2: C	oncentra	tion Requirements	
			(Required Credit Hours:9)
BIOE	700	Lab Rotations	3
BIOE	720	Ecosystem Management & Sustainability	3
BIOE	730	Topics In Ecology and Environmental Sciences	3

			(Required Credit Hours:9)
BIOE	610	Field Ecology	3
BIOE	630	Aquatic Ecology	3
BIOE	640	Wildlife Disease Ecology	3
BIOE	659	Conservation Biology	3
BIOE	665	Global Environmental Changes	3
BIOE	682	Desert Ecology	3
Part 4: Qua	alificati	on Requirements	
			(Required Credit Hours:0)
COSC	800	Comprehensive Exam	0
COSR	810	Research Proposal	0

30

0

COSR

COSD

900

910

Dissertation Research

Dissertation Defense

Department of Chemistry

Master of Science in Chemistry

Description

The M.Sc. in Chemistry program aims at providing opportunities to top UAE and international students to pursue a high quality graduate education in the field of chemistry. The program is built on knowledge depth and advanced research to prepare graduates for challenging jobs in multiple sectors. This is achieved by offering a well-balanced curriculum based on well-designed theoretical courses and providing opportunity and means for advanced research in highly important areas where major scientific and technological challenges are addressed. The Department of Chemistry is well-established in terms of research facilities allowing for advanced quality research under the supervision of faculty members with a wide spectrum of research interests. Research interests cover all of the traditional areas of chemistry, analytical, organic, inorganic, physical, and biochemistry besides cross-disciplinary research areas such as bio-analytical, petroleum, materials, environmental, pharmaceutical, and computational chemistry. The program is designed with significant flexibility by accepting full-time as well as part-time students and offering evening as well as week-end courses. The model study plan is to complete the required theoretical course work (24 credit hours) and thesis research work (6 credit hours) within two years for a for full-time candidate and three years for a part-time candidate.

Program Objectives

- 1. To provide students with in-depth knowledge of advanced topics in their chosen sub-discipline of chemistry.
- 2. To graduate students with the skills necessary to carry out independent research.
- 3. To develop students' communication and team-work skills.
- 4. To produce graduates who are well prepared for the workplace or further studies (Ph.D.) in chemistry.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Solve complex problems in chemical applications.
- 2. Use modern methods to carry out research and solve real life problems.
- 3. Properly document and present the results of research work.
- 4. Work effectively in teams and manage group tasks.
- 5. Apply appropriate ethical standards to issues related to science, research, and work.

Total Credit Hours: 30

6. Critically evaluate new information in the field of chemistry

			Course Credits
College of	f Science		
Required	Courses		
			(Required Credit Hours:6)
COSC	501	Research Methods	1
COSC	502	Ethics of Scientific Research	1
COSS	633	Seminar	2
STAT	503	Applied Statistics	2
			Course Credits
Chemistr			
Required	Courses		(D ' 10 I' II 0)
CHEM	F2.C	Chamilant Instrumentation	(Required Credit Hours:9)
CHEM	526	Chemical Instrumentation	3
CHEM	531	Advanced Organic Synthesis	3
CHEM	541	Advanced Biochemistry I	3
CHEM	551	Advanced Inorganic Chemistry I	3
CHEM	561	Advanced Physical Chemistry I	3
Elective	Courses		
			(Required Credit Hours:9)
CHEM	522	Analytical Spectroscopy	3
CHEM	523	Separation & Chromatographic Techniques	3
CHEM	524	Electroanalytical Techniques	3
CHEM	533	Organic Reaction Mechanisms	3
CHEM	534	Catalysis in Organic Chemistry	3
CHEM	535	Polymer Chemistry	3
CHEM	641	Advanced Biochemistry II	3
CHEM	651	Advanced Inorganic Chemistry II	3
CHEM	661	Advanced Physical Chemistry II	3
			Course Credits
Thesis			
Required	Course		
			(Required Credit Hours:6)
COSR	699	Thesis	6

Doctor of Philosophy (PhD) Concentration: Chemistry

Description

CHEM

CHEM

701

702

The PhD program in Chemistry is designed for students with Master degree in Chemistry from a credited university. It is a 56 credit hours program offered for full time students within the Department of Chemistry. The study plan is composed of 24 credit hours course work that students are required to complete successfully and 30 credit hours of research. Students are required to write and successfully defend a written PhD thesis at the end of their duration of study. The coursework includes 6 credit hours of College requirements (Ethics, Research Methods and Seminars), 3 chemistry core courses (9 credit hours) and 3 elective courses (9 credit hours). Students can choose their supervisors and have a chance to choose from a wide spectrum of available research topics. The program is fee-based and is open for all students who meet the entry requirements.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree I	Requiren	nents:	Total Credit Hours: 54
			Course Credits
Program	Requiren	nents:	
Part 1: G	eneral R	equirements	
			(Required Credit Hours:6)
COSC	701	Research Methods II	2
COSC	702	Ethics of Scientific Research II	1
COSS	711	Seminar I	1
COSS	722	Seminar II	1
COSS	733	Journal Club	1
		tion Requirements y 6 credits of the following courses:)	

Advanced Analytical Chemistry

Advanced Organic Chemistry

(Required Credit Hours:9)

3

3

CHEM	703	Advanced Protein Biochemistry: Structure and Fund	etion 3
CHEM	704	Molecular Structure and Bonding	3
CHEM	705	Modern Physical Chemistry	3
(Any 9 cr	edits hou	equirements ars of the following courses, or other approved graduate to the study plan.)	e courses of 600 levels or (Required Credit Hours:9)
CHEM	601	Organic Reaction Mechanisms	3
CHEM	602	Polymer Chemistry	3
CHEM	603	Spectroscopic methods of structure determination	3
CHEM	604	Biotechnology in the Modern World	3
CHEM	605	Mechanisms of cellular signal transduction	3
CHEM	606	Structure, Bonding and Properties of Solids	3
CHEM	608	Surface and Interface Analysis	3
CHEM	609	Mass Spectrometry	3
CHEM	612	Nanochemistry	3
CHEM	613	Photochemistry	3
CHEM	614	Organometallic Chemistry of the Transition Metals	3
CHEM	615	Chemical Sensors and Biosensors	3
CHEM	616	Advanced Topics in Physical Chemistry	3
Part 4: Q	ualificati	on Requirements	(Required Credit Hours:0)
COSC	800	Comprehensive Exam	0
COSR	810	Research Proposal	0
Part 5: Ro	esearch F	Requirements	
			(Required Credit Hours:30)
COSR	900	Dissertation Research	30
COSD	910	Dissertation Defense	0

Department of Geology

Doctor of Philosophy (PhD) Concentration: Geosciences

Description

The PhD program in Geology is available for students who have successfully completed a Master Degree in Geology or Earth Sciences from a university acceptable to the UAEU. The program offered by the Geology Department requires the student to complete 54 credit hours comprising 24 credit hours of course work and 30 credit hours of original research leading to a PhD thesis. The course work is divided into General Requirements (6 credit hours, including courses in Research Methods, Ethics of Scientific Research, Seminars and Journal Club); compulsory Concentration courses (9 credit hours, including courses in Plate Tectonics, Geoinformatics and Geology, Environment and Society); and a further 9 credit hours of a range of advanced elective courses. A broad range of geoscience topics are available for research. The program is fee-based and is open for all students who meet the entry requirements.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree Requirements:Total Credit Hours: 54

			Course Credits
Program	Requiren	nents	
Part 1: G	eneral R	equirements	
			(Required Credit Hours:6)
COSC	701	Research Methods II	2
COSC	702	Ethics of Scientific Research II	1
COSS	711	Seminar I	1
COSS	722	Seminar II	1
COSS	733	Journal Club	1

P	Part 2: Concentration Requirements	
		(Required Credit Hours:9)

GEOL	710	Advanced Topics in Plate Tectonics	3
GEOL	720	Modeling and Geoinformatics	3
GEOL	730	Geology, Environment and Society	3
(Any 9 ca	redits of	equirements the following courses, or other approved graduate courses of 600 level or ab tudy plan.)	ove
		(Required Credit H	lours:9)
GEOL	610	Geophysical Instruments & Data Acquisition	3
GEOL	615	Seismology & UAE Seismicity	3
GEOL	620	Carbonate/Evaporate Deposit Systems	3
GEOL	621	Diagnetic, Stratigraphy, & Reservoir Evaluation	3
GEOL	623	Formation Evaluation	3
GEOL	660	Computer Applications in Geosciences	3
Part 4: Q	ualificati	on Requirements	
		(Required Credit H	lours:0)
COSC	800	Comprehensive Exam	0
COSR	810	Research Proposal	0
Part 5: R	esearch F	Requirements	
		(Required Credit Ho	ours:30)
COSR	900	Dissertation Research	30
COSD	910	Dissertation Defense	0

Department of Mathematical Sciences

Master of Science in Mathematics

Description

The M.Sc. in Mathematical Sciences is a 30 credit hour program that is offered both full and part time within the Department of Mathematical Sciences. Students are required to complete 24 credit hours of coursework in addition to 6 credit hours assigned to research and a completion of a M.Sc. thesis. The coursework includes 4 credit hours of College of Science requirements (Ethics, Research Methods and Statistics), 3 core mathematics courses, and 2 department seminars (a total of 11 credit hours) in addition to 3 elective courses (9 credit hours) that allow the student to specialize in any specific topic related to pure or applied mathematics. Student progress is overseen by a research supervisor (and co-supervisors) and a thesis defense committee. The program is a fee-based program open for all students who meet the entry requirements.

Program Objectives

- 1. To provide students with a comprehensive advanced knowledge of the main areas of mathematics;
- 2. To provide students with the necessary background for further studies in Mathematics, and enhance their research capabilities;
- 3. To produce graduates with high level of analytic and numerical skills;
- 4. To train students to communicate effectively both orally and in writing;

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Discuss in depth concepts, techniques, and results related to active research in Mathematics.
- 2. Solve mathematical problems using theoretical tools and/or modeling.
- 3. Develop concise mathematical proofs.
- 4. Produce a comprehensive independent work, including a literature review.
- 5. Contribute actively to research projects in mathematics, using an adequate methodology.
- 6. Communicate effectively mathematical results to a specialized audience.
- 7. Demonstrate awareness of ethical issues related to science, research, and work.

Degree 1	Require	ments:	Total Credit Hours: 30 Course Credits (Required Credit Hours:6)	
			Course Credits	
College of Science				
Required	d Course	s		
			(Required Credit Hours:6)	
COSC	501	Research Methods	1	
COSC	502	Ethics of Scientific Research	1	
COSS	633	Seminar	2	
STAT	503	Applied Statistics	2	
		(Taken twice)		
			Course Credits	
Mathema	ntical Scie	ences		

Required	Courses		
			(Required Credit Hours:9)
MATH	510	Real Analysis	3
MATH	520	Numerical Analysis	3
MATH	540	Algebra I	3
Elective	Courses		
			(Required Credit Hours:9)
MATH	513	Calculus on Manifolds	3
MATH	515	Complex Analysis	3
MATH	516	C*-Algebras	3
MATH	517	Advanced Geometry	3
MATH	522	Numerical Methods in Differential Equations	3
MATH	541	Number Theory	3
MATH	561	General Topology	3
MATH	570	Theory of Partial Differential Equations	3
MATH	772	Theory of Ordinary Differential Equations	3
MATH	573	Dynamical Systems & Chaos Theory	3
MATH	611	Several Complex Variables	3
MATH	612	Measure Theory	3
MATH	616	Functional Analysis	3
MATH	622	Finite Element Methods	3
MATH	640	Algebra II	3
MATH	662	Algebraic Topology	3
MATH	670	Advanced Partial Differential Equations	3
MATH	675	The Mathematics of Finance	3
MATH	690	Selected Topics	3
MATH	695	Independent Studies	3
			Course Credits
Thesis			
Required	Course		(D. 1.10.11.77
COGD	600	Thesis	(Required Credit Hours:6)
COSR	699	Thesis	6

Doctor of Philosophy (PhD) Concentration: Mathematics

Description

The PhD program in Mathematical Sciences is designed for students with Master degree in Mathematics from a credit university. It is a 56 credit hours program offered for full time students within the Department of Mathematical Sciences. Students are required to complete 24 credit hours of coursework in addition to 30 credit hours assigned to research and a completion of a PhD thesis. The coursework includes 6 credit hours of College of Science requirements (Ethics, Research Methods and Seminars), 3 core mathematics courses in addition to 3 elective courses (9 credit hours) that allow the student to specialize in any specific topic related to pure or applied mathematics. Student progress is overseen by a research supervisor (and co-supervisors) and a thesis defense committee. The program is a fee-based program open for all students who meet the entry requirements.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree Requirements:	Total Credit Hours: 54
	Course Credits
Program Requirements:	

8						
Part 1: G	Part 1: General Requirements					
			(Required Credit Hours:6)			
COSC	701	Research Methods II	2			
COSC	702	Ethics of Scientific Research II	1			
COSS	711	Seminar I	1			
COSS	722	Seminar II	1			
COSS	733	Journal Club	1			

Part 2: Concentration Requirements

(Student can choose any three of the following courses including MATH 715. The list of courses below will allow the students to choose their field of study either pure or applied mathematics.)

			(Required Credit Hours:9)
MATH	710	Functional Analysis	3

MATH	715	Advanced Measure Theory	3
MATH	720	Numerical Methods for Partial Differential Equations	3
MATH	740	Advanced Algebra	3
MATH	760	Topology	3
MATH	770	Advanced Partial Differential Equations	3
MATH	772	Theory of Ordinary Differential Equations	3
(Any 9 cr	edits hou	equirements (9 credits) ars of the following courses, or other approved graduate course of the study plan.)	
		V A	ired Credit Hours:9)
MATH	662	Algebraic Topology	3
MATH	663	Knot Theory and Applications	3
MATH	643	Cryptography	3
MATH	644	Coding Theory	3
MATH	664	Differential Manifold	3
MATH	641	Advanced Number Theory	3
MATH	673	Dynamical Systems	3
MATH	674	Stochastic Calculus for Finance	3
MATH	676	Advanced Mathematics of Finance	3
MATH	677	Numerical Methods for Finance	3
MATH	671	Integral Equations and Calculus of Variations	3
MATH	716	Introduction to Operator Algebras	3
MATH	745	Finite Fields and Applications	3
MATH	746	Finite Groups	3
MATH	747	Module and Ring Theory	3
Part 4: Qu	ualificati	on Requirements	
		*	ired Credit Hours:0)
COSC	800	Comprehensive Exam	0
COSR	810	Research Proposal	0
Part 5: Re	esearch R	Requirements	
		(Requir	red Credit Hours:30)
COSR	900	Dissertation Research	30
COSD	910	Dissertation Defense	0

Department of Physics

Master of Science in Physics

Description

The Master of Science in Physics program is designed to serve and support the UAE strategic needs in various areas which include, but are not limited to: nuclear energy, semiconductor industry, Medical Physics, Aerospace industry, Nanophysics and Nanotechnology. The program aims at preparing its graduates for professional and leadership positions in industrial, educational and governmental institutions.

Program Objectives

Required Courses

- 1. A robust background in concepts and solving skills in fundamental Physics.
- 2. The capability to research a topic in contemporary Physics.
- 3. The capability to communicate finds.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate insightful understanding of advanced topics in physics.
- 2. Demonstrate critical awareness of recent developments in physics.
- 3. Manage their own learning and professional development and make use of appropriate literature, research articles and other primary sources.
- 4. Plan and conduct a research project in specified time duration under supervision.
- 5. Evaluate and solve complex real-world scientific problems both systematically and creatively.
- 6. Analyze, interpret and publicize their research findings and defend their conclusions before specialists and non-specialist audiences.
- 7. Consistently and sensitively manage highly complex ethical issues leading to informed, fair and valid decisions.

Degree 1	Require	ments:	Total Credit Hours: 30
			Course Credits
College o	f Science		
Required	d Courses	s	
			(Required Credit Hours:6)
COSC	501	Research Methods	1
COSC	502	Ethics of Scientific Research	1
PHYS	633	Seminar I	1
STAT	503	Applied Statistics	2
			Course Credits
Physics			

(Required Credit Hours:9)

PHYS	515	Methods of Mathematical Physics	3
PHYS	525	Quantum Physics I	3
PHYS	530	Electrodynamics I	3
Elective ((9 CH f		option and 12CH for Non-Thesis option))	
		(F	Required Credit Hours:9)
PHYS	541	Atomic Physics	3
PHYS	542	Introduction to Astrophysics	3
PHYS	543	Laser Physics	3
PHYS	545	Analytical Mechanics	3
PHYS	552	Nuclear Physics	3
PHYS	555	Introduction to Plasma Physics	3
PHYS	560	Elementary Particle Physics	3
PHYS	571	Radiation Physics	3
PHYS	574	Physics of Radiotherapy	3
PHYS	575	Physics of Semiconductors	3
PHYS	576	Physics of Nuclear Medicine	3
PHYS	614	Modern Statistical Physics	3
PHYS	616	Experimental Condensed Matter Physics	3
PHYS	622	Solid-State Physics I	3
PHYS	730	Electrodynamics II	3
PHYS	635	General Relativity	3
PHYS	660	Methods in Experimental Particle Physics	3
PHYS	672	Medical Imaging & Instrumentation	3
PHYS	675	Imaging Science	3
PHYS	678	Magnetic Resonance Imaging & Spectro	3
PHYS	698	Selected Topics I	3
			Course Credits
Thesis/Re	esearch Pr	roject	
Required (6 Credit		or Thesis option and 3 Credit Hours for non-thesis option)	
		(F	Required Credit Hours:6)
COSR	699	Thesis	6

Doctor of Philosophy (PhD) Concentration: Physics

Description

The PhD program in Physics is a research program that offers research opportunities in condensed matter and solid state physics, high energy physics, nano-physics, plasma physics and controlled fusion, applied nuclear science, medical and biophysics, astrophysics, and atomic and molecular physics. A PhD student is required to complete as minimum requirements 24 CH of course work and 30 CH in thesis research in addition to passing a comprehensive exam and defending his/her thesis research findings.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- 1. Demonstrate the breadth of knowledge in the discipline and advance, in-depth knowledge in the sub-discipline or area of specialization.
- 2. Perform and defend an original work of research in their fields of specialization which contributed new human knowledge.
- 3. Identify, analyze critically and explain open problems in their disciplines and apply relevant research methodology for finding a possible solution.
- 4. Communicate the major tenets of their field of specialization and their work orally and in writing to the faculty, their peers, and the lay public.
- 5. Identify areas where ethical issues may arise in their field, and articulate strategies to mitigate situations related to ethical issues in their profession.
- 6. Demonstrate an insight into the transferable nature of research skills to other work environments and the range of career opportunities available to them inside and outside academia.

Degree Requirements:Total Credit Hours: 54

Course Credits

Program Requirements:

Part 1: G	Part 1: General Requirements				
			(Required Credit Hours:6)		
COSC	701	Research Methods II	2		
COSC	702	Ethics of Scientific Research II	1		
COSS	711	Seminar I	1		
COSS	722	Seminar II	1		
COSS	733	Journal Club	1		

Part 2: Concentration Requirements			
			(Required Credit Hours:9)
PHYS	705	Quantum Physics II	3
PHYS	722	Solid State Physics II	3
PHYS	730	Electrodynamics II	3

		(Required C	Credit Hours:9)
PHYS	715	Synthesis, Characteristics & Applications of Nanomaterials	3
PHYS	720	Quantum Field Theory I	3
PHYS	724	Computational Physics	3
PHYS	735	Quantum Theory of Polymers	3
PHYS	755	Physics of NonIdeal Plasmas	3
PHYS	771	Physics & Engineering of Radiation Detection	3
PHYS	778	Advanced Magnetic Resonance	3
PHYS	780	Quantum Field Theory II	3
PHYS	782	Standard Model of Particle Physics	3
PHYS	790	Particle Physics Phenomenology	3
PHYS	792	Supersymmetry	3
PHYS	795	Advanced Topics in Particle Theory	3
PHYS	733	Seminar III	1
PHYS	798	Selected Topics II	3
Part 4: Q	ualificati	on Requirements	
		(Required C	Credit Hours:0)
COSC	800	Comprehensive Exam	0
COSR	810	Research Proposal	0
Part 5: R	esearch F	Requirements	
		` *	redit Hours:30)
COSR	900	Dissertation Research	30
COSD	910	Dissertation Defense	0