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Abstract 

The issue of model selection in applied research is of vital importance. Since the true 

model in such research is not known, which model should be used from among various 

potential ones is an empirical question. There might exist several competitive models. A 

typical approach to dealing with this is classic hypothesis testing using an arbitrarily 

chosen significance level based on the underlying assumption that a true null hypothesis 

exists. In this paper we investigate how successful this approach is in determining the 

correct model for different data generating processes using time series data. An 

alternative approach based on more formal model selection techniques using an 

information criterion or cross-validation is suggested and evaluated in the time series 

environment via Monte Carlo experiments. This paper also explores the effectiveness of 

deciding what type of general relation exists between two variables (e.g. relation in levels 

or relation in first differences) using various strategies based on hypothesis testing and on 

information criteria with the presence or absence of unit roots.  

Running title: Model Selection Strategies in Time Series 

JEL classification: C52, C22, C32  
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Model Selection in Time Series Analysis:  

Using Information Criteria as an Alternative to Hypothesis Testing 

 

1. Introduction2 

 

Modern time series analysis leads the researcher to consider a wide variety of data 

characteristics in determining whether a relation exists between variables. The researcher 

needs to be concerned about whether the variables are stationary or not, whether they 

each have a trend, and how many lags to include in examining the data. The researcher 

needs to also be concerned with whether a relation between the variables is apparent 

between the levels of the variables, perhaps through cointegration, or whether the relation 

is only apparent in first (or higher-order) differences. The existence of autocorrelation or 

heteroscedasticity and possibly correcting for these problems are also issues with which 

the researcher often needs to deal. All of this analysis with time series data renders the 

researcher to having to take into account a wide variety of potential models, and many of 

these models are not nested within others. 

 

Researchers using time series data in economics and finance have usually proceeded in 

their analysis by estimating regression models and testing various hypotheses in a 

frequentist tradition, e.g. testing for a unit root, testing for cointegration, testing for 

autocorrelation, and so forth. Hypothesis testing has had a dual role in finance, economics 

and other scientific disciplines. First, it is used to give us a minimum degree of 

confidence about rejecting a null hypothesis on some parameter restriction(s) by 

controlling for type I error at a particular level which is arbitrarily chosen, such as 5%.3 

Second, it is used for model selection—if the null hypothesis is not rejected we often 

consider the model with the null hypothesis as being acceptable, whereas if the null 

                                                           
2 The authors would like to thank Professor Clive Granger for his useful comments on a previous version of 
this paper. Previous versions of this paper were also presented at Deakin University and Queensland 
University of Technology. We thank the participants at these seminars for their comments.  
3 Type II error is also a concern to the extent that within the traditional hypothesis testing approach 
practitioners are suggested to use the test with highest power for a given size of the test, but beyond that 
the level of power is often not of much concern. 
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hypothesis is rejected we find the model without the parameter restrictions in the null 

hypothesis as acceptable. The first role is formally the most appropriate use of hypothesis 

testing, but the model selection usage is, in our opinion, the usage that predominates in 

finance and economics.4 This is clear since economists are prone to repeated testing of 

various models to arrive at an acceptable one that fits the data without patterns in the 

residuals and that is hopefully robust. That process of repeated testing and discarding of 

models based upon it clearly affects the statistical size of the associated tests.5 With the 

final model that researchers end up with they often act as if they had that model in mind 

all along and go about their t-testing, F-testing, and confidence-interval creating as if 

there was no prior model selection process. With the prior model selecting however, the 

estimated degree of confidence that they have in the rejection of various hypotheses 

given by standard t-tests and F-tests can be very misleading. 

 

The developments in computer science have made the ability to consider systematically a 

wider variety of models in searching for an optimal model more operational. Hypothesis 

testing has been used in this endeavor, through step-wise regression techniques for 

example. A more sophisticated usage of hypothesis testing to search through a multitude 

of models is provided by Hendry and Krolzig with their PC-GETS software (see Hendry 

(2000), Hendry and Krolzig (1999, 2001), Krolzig (2001), or Krolzig and Hendry (2001) 

for a description). Another means to systematically compare many models is through the 

minimization of an information criterion (recommended by Granger, King, and White, 

1995, among others, with respect to time series data) or some other model selection 

criterion such as cross-validation estimates of prediction error. In our opinion the usage 

of information criteria has not taken place in empirical economic studies as extensively as 

it legitimately could be. Their primary usage seems to be in choosing lag lengths in time 

series models. There are several reasons behind this limited usage. First, as far as we 

know there have not been any systematic studies in the literature that can show whether 

using information criteria can improve inference as an alternative approach to hypothesis 

                                                           
4 The use of hypothesis testing as a means for model selection has been criticized before. See for example 
Akaike (1974, 1981) and Sclove (1994).  
5 This problem is known as the mass significance problem in the literature. It is most likely to be present if 
repeated testing includes nested models. 
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testing. Second, closely associated with the first reason, many are concerned that model 

selection through the use of an information criterion is simply a data mining tool, with 

questionable inference properties. This can lead to some deep philosophical discussion, 

but we think that some of the worst practices of data mining can actually be avoided by 

considering various alternative credible models and presenting the strength of evidence 

supporting each, which information criteria can provide. Third, although greater 

systematic usage of information criteria is accessible using current econometric software, 

it is not very convenient to the common practitioner using that software to make the 

necessary calculations for a large number of models.  

 

There are a number of purposes of the current study. First, we show how information 

criteria and cross-validation may be used for model selection when using time series data. 

The study considers the investigation of a potential relation between two variables in 

each of those variables may or may not be stationary and may or may not have a trend. 

We limit the study to the situation in which at least one of the variables is determined 

independently from the other. Second, we compare the extensive usage of model 

selection in a time series environment to stylized mechanical uses of hypothesis testing to 

search for an acceptable time series model. Third, we show the performances of the 

information criterion, cross-validation, and hypothesis testing strategies in a variety of 

ways using response surfaces and the principal of minimax regret. We consider the ability 

of the various strategies (1) to choose the right model, (2) to choose the right relation type 

between the variables (in levels, only in first differences, or none, for example) regardless 

of whether exactly the right model is chosen, and (3) to have superior predictive 

properties. Predictive properties are focused on since the true model is hardly ever among 

those considered in economic studies given that our models are vast simplifications of 

complicated economic relations.6 Fourth, we address the issue of how to consider the 

strength of evidence supporting one model versus another when using information 

criteria. This is an important issue since the typical use of information criteria is to select 

                                                           
6 Associated with this is the issue that the null hypothesis typically considered in hypothesis testing is 

probably not true a priori. For example testing the null hypothesis that the mean value of two groups is the 

same can be an unusual hypothesis to test, since the likelihood (in the Bayesian sense) that the two groups 

have exactly the same mean is very low. 
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a model without consideration of how strongly an information criterion supports the 

model over others. We largely follow the procedures outlined in Burnham and Anderson 

(2002) in considering model uncertainty. In dealing with this issue we suggest the 

calculation of some weights that reflect the strength of evidence supporting the various 

models considered. These weights may also be used to average across parameter 

estimates of different models, resulting in estimates that are perhaps more precise. This 

can be especially important if an alternative model to the chosen model seems to be 

almost as equally supported by the data. 

 

Our Monte Carlo simulations show that in the time series environment we are 

considering, minimization of an information criterion as a method for general model 

selection is preferable to hypothesis-testing strategies since the method often outperforms 

hypothesis testing in finding the correct model or relation type and in having superior 

predictive performance. Use of weights based on the information criterion values for the 

various considered models may be used to consider the strength of evidence supporting 

one model over another.  

 

The rest of the paper is organized as follows. The next section presents the general class 

of time series models we are investigating and provides a taxonomy of various models 

within that class. In the third and fourth sections we present the information criteria, 

cross-validation, and stylized hypothesis-testing strategies we are considering. In the fifth 

section we outline our simulation design. In the sixth section we display response 

surfaces on the performance of the various strategies given some selected true data 

generating processes. In the seventh section we consider a wider variety of parameters for 

the true data generating processes and make comparisons using minimax regret concepts. 

In the eighth section we deal with the issue of strength of evidence in support of various 

models and provide a broader discussion of empirical use of information criteria in model 

selection. The final section provides the conclusion. 
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2. Taxonomies of generating processes 

The simulations in this paper focus on a single-equation relation between two variables, Y 

and Z, in which Z may affect Y, but Y cannot affect Z. The most general equation that 

includes all the explanatory variables we are considering in determining Y is 

 

 ΔYt = b1 + b2t + b3Yt-1 + b4ΔYt-1 + b5ΔYt-2 + b6Zt + b7ΔZt + b8ΔZt-1  

          + b9ΔZt-2 +b10(Yt-1 – (c1 + c2Zt-1)) + ut,                       (1) 

 

or equivalently 

 

   Yt = b1 + b2t + (b3 + 1)Yt-1 + b4ΔYt-1 + b5ΔYt-2 + b6Zt + b7ΔZt + b8ΔZt-1  

          + b9ΔZt-2 +b10(Yt-1 – (c1 + c2Zt-1)) + ut,            (1’) 

 

where t is the time subscript, Δ is the first-difference operator, b1, b2, …, b10, c1 and c2 are 

constants, and ut is an error term drawn from a standard normal distribution. We never 

include this general equation with all its coefficient parameters nonzero as a possible 

model in this paper, as such a model has no tradition of having theoretical interest, but we 

do consider many versions of this equation in which have zero constraints on various 

parameters. The variable Zt is generated according to processes based on the equation:  

 

Zt = m1 + m2t + m3Zt-1 + εt,         (2) 

 

where the m1 and m2 parameters take on zero or nonzero values, m3 takes on values such 

that  10 3  m , and the error term εt is drawn from a standard normal distribution, 

independent of ut. 

 

We will concentrate only on those cases in which the variables can have at maximum 

only one unit root. The choice of equation (1) as the most general equation for the Y 

generating process is based on the following five issues we would like to consider in 
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investigating how Y and Z are possibly related. First, the form of the potential level 

relation is relevant. If the two variables are stationary, a simple form of such a relation is 

 

ttt uZbbY  61
,  b6  0.7        (3) 

 

If the two variables are nonstationary, a level relation would need to be one of 

cointegration, and the simplest form of such a level relation consistent with Johansen 

(1988, 1991) testing is  

 

ΔYt = b4ΔYt-1 + b8ΔZt-1 + b10(Yt-1 – (c1 + c2Zt-1)) + ut, b10 < 0, c2  0.   (4) 

 

Both equations (3) and (4) are included among the candidate models. 

 

Second, we are interested in considering whether a relation between first differences in 

the variables exists, without there necessarily being a level relation. One form of such a 

relation would occur if equation (4) were the true data generating process with b8  0 and 

b10 = 0. Since we are considering a relation in current levels in equation (3), it would 

seem odd not to consider the analogous situation with first differences. Therefore we also 

include 

 

ttt uZbY  7
, b7  0        (5) 

 

among the candidate models. Third, we would like to allow for a possible time trend for 

Y, which leads to the consideration of a time variable, t, as an additional explanatory 

variable in equation (3), or an intercept term as an additional parameter to be estimated in 

equations (4) and (5).8 Fourth, we would like to provide as alternatives to Y being related 

to Z some simple univariate processes for generating Y, with the four permutations of 

                                                           
7 We could consider alternatively consider Yt’s potential relation to Zt-1, which would be equally simple, but 

we focus only on current levels relation in this paper to keep the discussion manageable.  
8 In equation (4) with cointegration, if Z has a trend, Y should have a trend also, even without an 
additional intercept term. However if b10 = 0 (no cointegration), inclusion of the additional intercept b1 
would be needed to induce a trend in Y. 
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stationarity/nonstationarity and trend/no trend. The following processes provide the four 

permutations 

Yt = Yt-1 + ut                              (random walk: nonstationary, no trend) (6) 

Yt = b1 + Yt-1 + ut , b1  0  (random walk with drift: nonstationary, with trend) (7) 

Yt = b1 + (b3+1)Yt-1 + ut,  b3+1 < 1     (stationary, no trend) (8) 

Yt = b1 + b2t + (b3+1)Yt-1+ut, b3+1 < 1        (stationary around trend).9 (9) 

  

Fifth, we would like to include various augmentation lags, by which we mean the 

additional lagged first difference variables found in the augmented Dickey and Fuller 

(1979) unit root test or the Johansen (1988, 1991) cointegration test.  In the case of the 

unit root test this means inclusion of ,..., 21   tt YY as explanatory variables for Yt, and 

in the case of the Johansen cointegration test this means the inclusion of  ,..., 21   tt YY

and ,..., 21   tt ZZ  (with the same number of lags for Y and Z), as explanatory 

variables for Yt. Allowing for too many of these lags would make the simulation study 

too cumbersome, so we opted to have a maximum of two, which allows consideration of 

the effect of including augmentation lags but choosing the wrong lag length.  

 

Comparing equation (1) to equations (3)–(9) shows that all of the variables in the latter 

equations show up in equation (1) and equation (1) does not include any extra 

explanatory variables except augmentation lags. Table 1 provides a taxonomy of the 

various models we wish to consider arising from various constraints on equation (1). For 

the model numbers given in that table, the digits before the decimal point distinguish a 

model, ignoring how many augmentation lags are included, and the digits after the 

decimal point indicate the number of augmentation lags included. For the model titles, 

the abbreviations AL(1) and AL(2) mean respectively inclusion of one augmentation lag 

and inclusion of two augmentation lags. In discussing models we sometimes refer to just 

the first digit, in which case we are referring to all models with that first digit, e.g. model 

1 means model 1.00, model 1.01, and model 1.02 as a group. Note that in the way we 

refer to models, whether or not a parameter is zero is distinguishing, e.g. Yt = b1 + ut 

                                                           
9 These are the four model alternative considered as plausible for simple unit root testing in Elder and 
Kennedy (2001). 
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(model 5.00) is considered to be a different model from Yt = b1 + b6Zt + ut (model 11.00) 

rather than a special case of model 11, since any shown parameters in Table 1 are 

assumed nonzero. 

 

Models 1–4 provide the univariate situations noted in equations (6)–(9), with and without 

augmentation lags. Models 5 and 6 use the same equations as the univariate stationary 

models 3 and 4, but with the restriction that b3 = -1, so the speed of convergence to 

equilibrium is immediate. We refer to this as “White Noise” since it produces the 

generating process Yt = b1 + ut when there is no time trend and no lag augmentations. 

When there is a deterministic trend term appended to this process we call the process 

“White noise around a trend” and when lag augmentations are appended we continue 

using these terms despite the fact that the lag augmentations formally make the process 

not white noise. The reason for inclusion of Models 5 and 6 is to decrease an otherwise 

high frequency of acceptance of an actual relationship between Y and Z in some situations 

when there is spurious correlation between them. More on this matter is discussed later in 

the paper. 

 

Table 1. Taxonomy of equations explaining Yt 
Model 

Number
a 

Rela-

tion 

typeb 

Title Process for Yt  generationc 
Equivalent process for Yt  

generationc 

1.00 D Random Walk Yt = Yt-1 + ut  ΔYt = ut (nothing to estimate) 

1.01 D Random Walk, no intercept, 

AL(1) 

Yt = Yt-1 + b4ΔYt-1 + ut ΔYt = b4ΔYt-1 + ut 

1.02 D Random Walk, no intercept, 

AL(2) 

Yt = Yt-1 + b4ΔYt-1 + b5ΔYt-2 + 

ut 
ΔYt = b4ΔYt-1 + b5ΔYt-2 + ut 

2.00 D Random Walk with drift Yt = b1 + Yt-1 + ut ΔYt = b1 + ut 
2.01 D Random Walk  with drift, 

AL(1) 

Yt = b1 + Yt-1 + b4ΔYt-1 + ut ΔYt = b1 + b4ΔYt-1 + ut 

2.02 D Random Walk  with drift, 

AL(2) 

Yt = b1 + Yt-1 + b4ΔYt-1 + b5ΔYt-

2 + ut 
ΔYt = b1 + b4ΔYt-1 + b5ΔYt-2 + 

ut 
3.00 D Stationary around nonzero 

constant 

Yt = b1 + (b3+1)Yt-1 + ut,  

-1< b3+1 < 1, b3 + 1 ≠ 0 
ΔYt = b1 + b3Yt-1 + ut,  

-2< b3 < 0, b3 ≠ -1 
3.01 D Stationary around nonzero 

constant, univariate AL(1) 

Yt = b1 + (b3+1)Yt-1 + b4ΔYt-1 + 

ut,  

 -1< b3+1 < 1, b3 + 1 ≠ 0 

ΔYt = b1 + b3Yt-1 + b4ΔYt-1 + 

ut,  

-2< b3 < 0, b3 ≠ -1 
3.02 D Stationary around nonzero 

constant, univariate AL(2) 

Yt = b1 + (b3+1)Yt-1 + b4ΔYt-1 + 

 b5ΔYt-2 + ut, -1<b3+1 < 1, b3 + 

1 ≠ 0 

ΔYt = b1 + b3Yt-1 + b4ΔYt-1 + 

b5ΔYt-2 + ut,  

-2< b3 < 0, b3 ≠ -1 
4.00 D Trend Stationary (without Yt = b1 + b2t + (b3+1)Yt-1 + ut,  ΔYt = b1 + b2t + b3Yt-1 + ut,  
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white noise) -1< b3+1 < 1, b3 + 1 ≠ 0 -2< b3 < 0, b3 ≠ -1 
4.01 D Trend Stationary (without 

white nose), univariate 

AL(1) 

Yt = b1 + b2t + (b3+1)Yt-1 + 

b4ΔYt-1 + ut, 

-1< b3+1 < 1, b3 + 1 ≠ 0 

ΔYt = b1 + b2t + b3Yt-1 + b4ΔYt-1 + 

ut, 

-2< b3 < 0, b3 ≠ -1 

4.02 D Trend Stationary (without 

white noise), univariate 

AL(2) 

Yt = b1 + b2t + (b3+1)Yt-1 + 

b4ΔYt-1 + b5ΔYt-2 + ut, -1< b3+1 

< 1, b3 + 1 ≠ 0 

ΔYt = b1 + b2t + b3Yt-1 + b4ΔYt-1 + 

 b5ΔYt-2 + ut, -2<b3< 0, b3 ≠ -1 

5.00 D White noise Yt = b1 + ut ΔYt = b1 – Yt-1 + ut,  

5.01 D White noise AL(1) Yt = b1 + b4ΔYt-1 + ut,  ΔYt = b1 – Yt-1 + b4ΔYt-1 + ut,  

5.02 D White noise AL(2) Yt = b1  + b4ΔYt-1 + b5ΔYt-2 + ut, ΔYt = b1 – Yt-1 + b4ΔYt-1 + b5ΔYt-2 + 

ut,  

6.00 D White noise around trend Yt = b1 + b2t +ut,  ΔYt = b1 + b2t –Yt-1 + ut 

6.01 D White noise around trend 

AL(1) 

Yt = b1 + b2t  + b4ΔYt-1 + ut, ΔYt = b1 + b2t – Yt-1 + b4ΔYt-1 + ut 

6.02 D White noise around trend 

AL(2) 

Yt = b1 + b2t  + b4ΔYt-1 + b5ΔYt-

2 + ut,  

ΔYt = b1 + b2t –Yt-1 + b4ΔYt-1 + 

b5ΔYt-2 +ut,  

7.00 B Difference relation, no 

intercept 

Yt = Yt-1  + b7ΔZt + ut ΔYt = b7ΔZt + ut 

8.00 B Difference relation with 

intercept 

Yt = b1 + Yt-1  + b7ΔZt + ut ΔYt = b1 + b7ΔZt + ut 

9.01 B Difference Granger-causal 

model, no intercept, AL(1) 

Yt = Yt-1 + b4ΔYt-1 + b8ΔZt-1 + 

ut 

ΔYt = b4ΔYt-1 + b8ΔZt-1 + ut 

9.02 B Difference Granger-causal 

model, no intercept, AL(2) 

Yt = Yt-1 + b4ΔYt-1 + b5ΔYt-2 + 

b8ΔZt-1 + b9ΔZt-2 + ut 

ΔYt = b4ΔYt-1 + b5ΔYt-2 + b8ΔZt-1 + 

 b9ΔZt-2+ ut 

10.01 B Difference Granger-causal 

model, with intercept, 

AL(1) 

Yt = b1 + Yt-1 + b4ΔYt-1 + b8ΔZt-

1 + ut 

ΔYt = b1 + b4ΔYt-1 + b8ΔZt-1 + ut 

10.02 B Difference Granger-causal 

model, with intercept, 

AL(2) 

Yt = b1 + Yt-1 + b4ΔYt-1 + b5ΔYt-

2 + b8ΔZt-1 + b9ΔZt-2 + ut 

ΔYt = b1 + b4ΔYt-1 + b5ΔYt-2 + 

b8ΔZt-1 + b9ΔZt-2 + ut 

11.00 A Current level relation Yt = b1 + b6Zt + ut ΔYt = b1 – Yt-1 + b6Zt + ut 

12.00 A Trend Current-level relation Yt = b1 + b2t + b6Zt + ut  ΔYt = b1 + b2t – Yt-1 + b6Zt + ut 

13.01 A Error correction model, no 

intercept, AL(1) 

Yt = Yt-1 + b4ΔYt-1 + b8ΔZt-1 + 

       b10(Yt-1 – (c1 + c2Zt-1)) + ut 

ΔYt = b4ΔYt-1 + b8ΔZt-1 + 

       b10(Yt-1 – (c1 + c2Zt-1)) + ut 

13.02 A Error correction model, no 

intercept, AL(2) 

Yt = Yt-1 + b4ΔYt-1 + b5ΔYt-2 + 

b8ΔZt-1 + b9ΔZt-2 +b10(Yt-1 – (c 1 

+ c 2Zt-1)) + ut 

ΔYt = b4ΔYt-1 + b5ΔYt-2 + b8ΔZt-1 + 

b9ΔZt-2 +b10(Yt-1 – (c 1 + c 2Zt-1)) + ut 

14.01 A Error correction model, with 

intercept, AL(1) 

Yt = b1 + Yt-1 + b4ΔYt-1 + b8ΔZt-

1 + 

       b10(Yt-1 – (c1 + c2Zt-1)) + ut 

ΔYt = b1 + b4ΔYt-1 + b8ΔZt-1 + 

       b10(Yt-1 – (c1 + c2Zt-1)) + ut 

14.02 A Error correction model, with 

intercept, AL(2) 

Yt = b1 + Yt-1 + b4ΔYt-1 + b5ΔYt-

2 + b8ΔZt-1 + b9ΔZt-2 + 

b10(Yt-1 – (c 1 + c 2Zt-1)) + ut 

ΔYt = b1 + b4ΔYt-1 + b5ΔYt-2 + 

b8ΔZt-1 + b9ΔZt-2 +b10(Yt-1 – (c 1 + c 

2Zt-1)) + ut 

15.01 C Stationary around lagged 

Z, 

no intercept, AL(1) 

Yt = (b3+1)Yt-1 + b4ΔYt-1 + 

b8ΔZt-1 + ut, 

b3+1 < 1 

ΔYt = b3Yt-1 + b4ΔYt-1 + b8ΔZt-1 + ut, 

b3<0 

15.02 C Stationary around lagged 

Z, intercept, AL(2) 

Yt = (b3+1)Yt-1 + b4ΔYt-1 + 

b5ΔYt-2 + b8ΔZt-1 + b9ΔZt-2 + ut, 

b3+1 < 1 

ΔYt = b3Yt-1 + b4ΔYt-1 + b5ΔYt-2 + 

b8ΔZt-1 + b9ΔZt-2 + ut, b3<0 

16.01 C Stationary around lagged 

Z, 

with intercept, AL(1) 

Yt = b1 + (b3+1)Yt-1 + b4ΔYt-1 + 

b8ΔZt-1 + ut, b3+1 < 1 

ΔYt = b1 + b3Yt-1 + b4ΔYt-1 + b8ΔZt-1 

+ ut, b3<0 

16.02 C Stationary around lagged 

Z, 

with intercept, AL(2) 

Yt = b1 + (b3+1)Yt-1 + b4ΔYt-1 + 

b5ΔYt-2 + b8ΔZt-1 + b9ΔZt-2 + ut, 

b3+1 < 1 

ΔYt = b1 + b3Yt-1 + b4ΔYt-1 + b5ΔYt-2 

+ b8ΔZt-1 + b9ΔZt-2 + ut, b3<0 
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a In the text, references to a model number without the digits after the decimal point refers to the group of 

models with that number before the decimal point, e.g. model 1 refers to the group of modes 1.00, 1.01, and 

1.02. 
b The relation type between Y and Z is categorized as follows: A = relation in levels, B = relation only in 

first differences, C = mixed relation (relation neither purely in levels nor purely in differences, D = no 

relation among those considered). 
c The bi (i = 1,…,10) and ci (i =1, 2)  parameters noted for each model are nonzero in each listed model. 

 

Models 7 and 8 deal with the first-difference relation described in equation (5), without 

and with a nonzero intercept included (the nonzero intercept would induce a trending 

drift in the level of Y unless counteracted exactly by an opposite trending drift in Z). 

Models 11 and 12 deal with the level relation in current values described in equation (3), 

without and with time included as an extra explanatory variable. Models 13 and 14 deal 

with the cointegrating relation described in equation (4), without and with an intercept 

included (a nonzero intercept could induce a trend as some other parameters approach 

zero), and with one or two augmentation lags. Models 9 and 10 are the same as models 

13 and 14, except the speed of convergence term b10 is set equal to zero so there is no 

cointegration. As such they become models of Granger causality in the first-differences 

of the variables. Models 15 and 16 also use restricted forms of the equations of models 13 

and 14, with c1 and c2 equal to zero, so there is again no cointegration (b10 in models 13 

and 14 becomes b3 in models 15 and 16).  

 

We consider there to be a hierarchy in how variables are related to each other. If there is a 

level relation, i.e. a long-run relation between the variables, then some sort of relation in 

first differences is also implied. However, the reverse needs not hold—there may be only 

a short-run relation. Sometimes we have a relation between the variables that does not fit 

nicely within the category of a relation in levels or a relation in first differences, as in 

models 15 and 16. This leads us to categorize the models in Table 1 according to the 

following hierarchy on the relation type (as seen in the second column of the table): 

 

A = Y and Z have a relation in levels. 

B = Y and Z have a relation only in first differences. 

C = Y and Z have a mixed relation, i.e. a relation that is neither purely in levels nor purely 

in first  
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        differences. 

D = Y and Z have no relation (among those considered). 

 

Relevant for some of the models in Table 1 is the corresponding data generating process 

for the explanatory variable Z. For example, cointegration between Y and Z requires a 

random walk (with or without drift) for both variables. The most general equation for the 

process generating Z we consider is given by equation (2). Table 2 lists more specifically 

the types of processes we included in the simulations of this paper for generation of the Z 

variable. These processes have the same form as models 1.00, 2.00, 3.00, and 4.00 for 

generating Y. We have chosen enough processes in generating Z so that in connection 

with some of the models in Table 1, we can consider situations in which there is a 

relation between Y and Z where both are nonstationary with no trend, where both are 

nonstationary with a trend (through the drift), and where both are stationary, perhaps 

around a trend.  

 

 

        Table 2. Taxonomy of models explaining Zt 

Process Name Equation 

Random Walk Zt = Zt-1 + εt  

Random Walk with drift Zt = m1 + Zt-1 + εt, 

Stationary around nonzero 

constant 

Zt = m1 + m3Zt-1 + εt , m3<1 

Trend Stationary Zt = m1 + m2t +  m3Zt-1 + εt , m3<1 

                     The mi (i = 1, 2, 3) parameters noted are nonzero in each listed model. 

 

3. Model selection using information criteria or cross-validation 

 

In this section we present the information criteria we are considering in this paper for 

model selection, along with a cross-validation methodology. The information criteria we 

look at are the Akaike Information Criterion by Akaike (1973, 1974), the Sugiura (1978) 

and Hurvich and Tsai (1989) corrected Akaike Information Criterion, the McQuarrie, 
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Shumway, and Tsai (1997) unbiased corrected Akaike Information Criterion, and the 

Schwarz Information Criterion by Schwarz (1978). Leave-one-out cross-validation is the 

investigated cross validation method. The Akaike information criterion is defined as 

 

)1(2lnAIC 







 C

T

RSS
T ,        (10) 

 

where RSS is the residual sum of squares for the estimated model, T is the number of 

observations and C is the number of estimated coefficient parameters including the 

intercept if it present. The corrected Akaike information criteria is 

 

2

)1(2
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
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and the unbiased corrected Akaike information criterion using an unbiased variance 

estimate is defined as  

 

2
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lnAICu

















CT

CT

CT

RSS
T .       (12) 

 

The final criterion considered in this paper is the Schwarz information criterion, defined 

as 

 

 CT
T

RSS
T lnlnSIC 








          (13) 

 

which was introduced by Schwarz (1978) and an equivalent criterion was introduced by 

Akaike (1977, 1978).1011 

                                                           
10 The definitions for these information criteria in this paragraph differ in various sources. The definitions 
given here assume normally distributed errors with constant variance. Other definitions can differ by 
addition of a constant and/or multiplying by a constant, modifications which of course do not affect the 
results when finding a model that minimizes a particular criterion. In AIC, AICc, and AICu, the second term 
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The goal of the Akaike information criterion and its adjusted versions, AICc and AICu, is 

optimal predictive performance in the domain of the original sample. AIC is 

asymptotically efficient (Shibata, 1980), providing a consistent estimator of predictive 

accuracy (Forster, 2001). AICc resolves some small-sample overfitting problems of AIC 

of AIC by using a direct estimate of the expected Kullback-Leibler distance in the 

derivation of the regression model, and otherwise it is asymptotically equivalent to AIC 

(McQuarrie and Tsai, 1998).12 The use of the unbiased variance estimate in AICu is 

meant to deal with some overfitting properties of AIC and AICc asymptotically, but at 

the cost that it loses asymptotic equivalence with those earlier criteria (McQuarrie and 

Tsai, 1998).13 Using a Bayesian derivation, the Schwarz information criterion instead 

aims to maximize the posterior probability of choosing the correct model if the correct 

model is among those choosable, and it is consistent in finding the true model under such 

circumstances. Rissanen (1978, 1983, 1989) provides another derivation of SIC based on 

minimizing the minimum description length.14 

 

For the information criteria, the value of C, the number of unconstrained coefficient 

estimates used in the regression, is important, as a model is penalized the higher that 

number is. In the case of the error correction models (models 14 and 15) it is not so 

obvious whether that value should include the number of coefficient parameters 

estimated for the cointegrating vector, as we just use the residuals from the regression for 

the cointegrating vector as another explanatory variable. In this paper we consider the 

                                                                                                                                                                             

includes (C+1), representing the number of parameters to be estimated including the variance of the error 
term.  
11 The properties of different information criteria are investigated by Hacker and Hatemi-J (2008) via 
simulation methods. 
12 The Kullback-Leibler distance is discussed briefly in Section 8 of this paper. 
13 McQuarrie and Tsai (1998, pp. 32-33) note “that the probability that an efficient model selection 
criterion [e.g. AIC and AICc] will overfit by one particular extra variable is 0.1573, whereas consistent 
model selection criteria [e.g. SIC] overfit with probability 0…. The probability that AICu overfits by one 
particular extra variable is 0.0833, roughly halfway between 0 and 0.1573”. The bracketed parts in the 
preceding quote are put in by the current authors. 
14 Another popular information criterion in time series analysis is the Hannan-Quinn (1979) one. Hatemi-J 
(2003, 2008) suggests another competitive criterion, which combines elements of the Hannan-Quinn 
information criterion and SIC. Performances on these measures are not included in this paper to save 
space. 
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estimates for the intercept and slope coefficients in the cointegrating vector, c1 and c2, as 

among the estimated parameters to be included in the calculation of C. If we did not do 

that, then we would not take into account the extra fitting to the data that those parameter 

estimates provide.15  

 

The leave-one-out cross validation (CV) criterion is 

2

1 1

ˆ1


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tt
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YY

T
CV ,         (14) 

where Yt is the tth observation of Y, tŶ  is the estimate for the tth
 value of Y given the 

estimated model, hi is the ith diagonal element of the matrix  1)'(  , and χ is the data 

matrix for the independent variables in the model. The goal of CV is to estimate the 

average squared predictive error of an estimated equation without any assumptions about 

the true data generating process. The computation in (14) is equivalent to the mean of the 

square of the errors from the process in which for each of the observations the researcher 

first estimates an equation by ordinary least squares with the other observations, and 

using the resulting estimated equation measures the error in predicting the left-out 

observation (Wang, 2004). 

 

For the purpose of model selection, the strategy when using AIC, AICc, AICu, SIC, or CV is 

to choose from a set of models that model which minimizes the given measure. To 

maintain comparability, all estimates of the bi parameters in each model of Table 1 use 

the same number of observations, even if more are available when less lags are needed. 

                                                           
15 Some may question whether the estimate for c1 should be included in the sum of coefficient parameter 
estimates when b1 is already included, since one may consider b1 – b10c1 as being a single estimated 
intercept term to be included in the count. We find that the estimates for b1 and c1 provide different 
information, since the value for m1 in the process generating Zt affects them differently, thereby 
warranting counting them separately. Note that the data generating processes in models 13 and 14 (15 
and 16) are actually of the same form since both have an intercept: 

10 1b c  in the case of model 13 and 

1 10 1b b c  in the case of model 14 (16). Making distinctions of these as being different models is in a sense 

artificial, based only on the fact that a two-stage process is used in which the cointegrating vector is 
estimated first, providing estimates for c1 and c2, and then estimating the error-correction model using 
the residuals from the first stage to get the other parameter estimates.  
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In our simulations using the information criteria or cross-validation, the estimated 

parameters in the cointegrating vector are the estimated parameters in model 11.00. 

 

 4. Strategies for choosing among dynamic specifications using hypothesis testing 

There are many strategies suggested for determining whether a relation exists between 

two particular variables of interest with time series data. We have attempted to simulate 

what we think are the most common ways of approaching the issue using hypothesis 

testing, although in practice different econometricians will have their own favorite 

modifications to these strategies that they think represent the ideal way to tackle the 

problem. In this section we discuss the hypothesis-testing strategies used in our 

simulations.  

 

   First determine the univariate series status for each of the variables Y and Z, through the methodology displayed 

    in Figure 2. Each variable can be determined to be random walk, random walk with drift, stationary 

    around a constant, or stationary around trend with 0, 1 or 2 Dickey-Fuller Augmentations.  

             If both are determined to be                             If both are determined to be                               If neither of the       

             stationary (perhaps around trend)                    random walk, both with or                        two statements to left 

                       ↓                                                                        or without drift                                                        is true  

              Estimate                                                                                ↓ 

             
ttt uZbtbbY  621
,                                         Test for cointegration between Y and Z:         

             excluding b2t if neither stationary around trend.         Can no cointegration be rejected?c 

                                                                    ↓                                               No            ↓Yes 

                                           Is autocorrelation indicated?a                                        Conclude 

                                             No           Yes→ Is the autocorrelation strong?b          Error-Correction Relation 

                                                                                                No           Yes          

tt

K

k
ktkktkt

ub

ZbYbbY










110

*

1
731

              ε

 

                                                                           Re-estimate equation                            where
1 2t t tY c c Z    , 

                                                                           above using FGLSe                        (model 13 or 14, depending 

                           Can b6 = 0 be rejected using t test?   ←┘                                      on b1 constrained or not to 0, 

                                                    ↓ Yes               No                                 with the augmentation lag = K*) d                                                    

                   Conclude current-level relation without                 ↓                               

                   trend (model 11) or with trend (model 12)          Estimate  
ttt uZbbY  71
, excluding b1 if neither      

                   depending on whether b2t included.                     variable displays trend. 

                                                                                                            ↓ 

                                                                Is no autocorrelation indicateda and can b7= 0 be rejected by a standard t test? 

                                                                                              ↓ Yes             No↓ 

                                               Conclude this is a model of a current          Estimate  

                                               1st-difference relation                                   t

K

k ktkktkt uZbYbbY    1 731
,                      

                                               (model 7 or 8                                               excluding b1 if no trend or drift in both Y  

                                               depending on whether b1                             and Z and using SIC to determine K. 

                                               constrained to 0)                                                       ↓ 

                                                                                                  Can b8 = b9 = 0 be rejected?f         
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                                                                                                  ↓No                        ↓Yes             

Conclude no relation between the variables, with Yt simply following      Conclude difference Granger causal relation                                                                                     

its univariate series process determined in Figure 2 (model 1, 2, 3, 4,       (model 9 or 10 depending on b1 constrained                                                                              

 5, or 6, with Y’s associated augmentation lag from Figure 2).                    or not to 0, with the augmentation lag = K)     

Figure 1. Strategies based on hypothesis testing 
Notes: aUsing Breusch-Godfrey test. bAutocorrelation is considered not strong for these purposes if the 

Durbin-Watson statistic ≥ R2, as suggested by Maddala (1988) and if the coefficient estimate on the lagged 

residual in a Breusch-Godfrey test for autocorrelation is less than one.  cUsing either the Engle-Granger 

technique (in strategy EG) or the Johansen technique (in strategy Jo). dConstraint of b1 = 0 if no drifts in 

random walks of Y and Z; determination of K* discussed in text. eFeasible Generalized Least Squares, in 

this case utilizing 2-step Cochrane-Orcutt adjustment. fIf b9 not estimated, then the question is “Can b8 = 0 

be rejected?”  

 

Our generalization of using hypothesis testing to determine whether a relation exists 

between two variables and the structure of that relation is summarized in Figure 1. It 

includes checking for the stationarity status of each variable, the results of which 

determine subsequently what types of relationships between the variables are 

investigated: a simple level relationship, a relationship in current first differences of the 

variables, a long-run level relationship through cointegration, or a Granger-causal 

relationship in first differences of the variables. Figure 1 also adjusts the models tested 

according to whether or not the two variables have a trend (known a priori or suggested 

by the data), and it includes some testing for autocorrelation which can affect the final 

model selected. This figure represents only a caricature of the model selection process 

using hypothesis testing and is of course not fully representative of applications in reality. 

Usually applied econometricians supplement the mechanical process with looking for 

patterns in the raw data and residuals when making decisions about the usefulness of 

various models. We focus on the mechanical aspect as it is that part of the model 

selection process which can be subjected to simulation.  

 

Notable in this figure is that sometimes more tests are done than may occur in reality. 

Many practitioners for example may stop looking for a relation between variables after 

testing for cointegration and not finding it. However, such a conclusion does not lead to a 

clear accepted alternative model for the data generating process and further testing is 

needed to determine an acceptable model. Another potential aberration from practice in 

reality is that testing for Granger causality in the first differences in the variables (the last 



19 

 

test in the lower right of Figure 1) may not be the natural thing to do for many 

practitioners after failing to find a relation between the current first-difference of the 

variables. We include it since a Granger-causal relation in first differences needs to be 

selectable by the information criteria as an alternative to cointegration, and if information 

criteria can select Granger causal relations in first differences, then we want hypothesis 

testing to have the same opportunity in the simulations.  

 

At the top of Figure 1 there is for each variable a determination of the univariate series 

status (random walk, random walk with drift, stationary around a constant, or stationary 

around trend with 0, 1 or 2 Dickey-Fuller Augmentations). At the bottom left of Figure 1, 

one of a number of univariate series processes can be concluded (models 1-6 with the 

distinguishing 0, 1, or 2 augmentation lags, a classification which has slightly more 

categories than univariate series status if one ignores the distinguishing augmentation 

lags). How the univariate series status and the univariate series process are determined is 

displayed in Figure 2 (where variable x refers to variable Y or Z in Figure 1, as 

appropriate).  The strategy in Figure 2 starts with a unit root test using the appropriate 

Dickey-Fuller critical value,16 including time as a explanatory variable if there is known 

to be a trend in the variable or if the variable’s trend status is unknown, and then proceeds 

to test for a trend if the trend status is unknown. If stationarity around a constant or 

around a trend is determined, then further testing for white noise (b = -1) is performed, 

which is relevant for determining the univariate series process.17  

 

                                                           
16 The Dickey-Fuller critical values discussed are not exactly those given in the original Dickey and Fuller 
(1979) article. They are instead the critical values based on the formula and estimates for the response 
surface from unit root testing given in Mackinnon (1991). The critical values derived from Mackinnon are 
more flexible in number of observations and are arguably more precise than the original Dickey and Fuller 
critical values.  
17 The strategies in Figure 2 (except for the additional test for white noise noted in the footnotes of that 
table) we attribute to Elder and Kennedy (2001). The additional test on whether or not b=-1 is likely not to 
occur much in practice, but we think it is a harmless extension of the hypothesis testing strategy, and we 
include it to provide more comparability to the model selection strategy we are suggesting using 
information criteria or cross-validation.    
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            If  it is known that no trend exists: 
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                ↓ 

            Can b = 0 be rejected using t-statistic and Dickey-Fuller critical value?→ Yes: Decide stationary 

 ↓No                                                                                                                    around a constanta 

               Decide random walk (Model 1, if dealing with Y)         

 

            If it is known that a trend does exist: 

             Estimate 
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  ↓ 

Can b = 0 be rejected using t-statistic and Dickey-Fuller critical value?→ Yes: Decide stationary 

↓No                                                                                                                       around trendb 

               Decide random walk with drift (Model 2, if dealing with Y)         

 

             If trend status is unknown: 

              Estimate 
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                            ↓ 

Can b = 0 be rejected using t-statistic and Dickey-Fuller critical value?→ Yes  

   No                                                          ↓  

                                                                   Can c = 0 be rejected using t statistic and the usual t distribution? 

                                                           ↓ No                              ↓ Yes 

                                        Decide stationary                      Decide stationary 

                                        around a constanta                       around trendb    
                                                               

  Estimate 
t

K

k
ktkt exλax  




1

→  Can a = 0 be rejected using t statistic and the usual t distribution?  

                                                                                 ↓ No                                       ↓ Yes  

                                                               Decide random walk          Decide random walk with drift. 

                                                            (Model 1 if dealing with Y)     (Model 2 if dealing with Y) 

Figure 2. Determining univariate series status and the univariate process for a variable x 

Notes: aIn the case of determining the accepted univariate process for Y, the hypothesis b = -1 is also tested. 

If it can be rejected model 3 (stationary around nonzero constant) is accepted, otherwise model 5 (white 

noise) is accepted. 

 bIn the case of determining the accepted univariate process for Y, the hypothesis b = -1 is tested. If it can be 

rejected model 4 (trend stationary) is accepted, otherwise model 6 (white noise around trend) is accepted. 

 

In both figures the used number of augmentation lags, K and K*, are determined through 

minimization of the final prediction error using an unbiased estimator for variance,18 with 

a maximum of two lags (as discussed shortly, a multivariate version of SIC may be used 

                                                           
18 The final prediction error was proposed by Akaike (1969,1970). The final prediction error using an 
unbiased estimator for variance was presented on pages 33-34 in McQuarrie and Tsai (1998) and is given 

by the formula [ / ( )] [( 1) / ( 1)]UFPE RSS T C T C T C       . If K and K* were instead chosen using 

one of the information criteria covered in this study, different conclusions on comparisons of information 
criteria and the hypothesis-testing techniques could result. 
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instead for determining K* depending on the type of cointegration test used). These two 

figures indicate that all of the models in Table 1 except models 15 and 16 are choosable 

according to our stylized hypothesis testing strategy. In our simulations, models 15 and 

16 are choosable using information criteria, although they are not allowed as true data 

generating processes. Since they are not allowed as true data generating processes, we 

consider this asymmetry in what the hypothesis tests can choose and what the 

information criteria can choose as rather harmless for comparison of the techniques, 

except perhaps in consideration of predictive performance in some cases.  

 

Figures 1 and 2 otherwise should be largely self-explanatory, although some discussion 

of the details surrounding possible cointegration situations in Figure 1 is necessary. Such 

a discussion is provided below, and that is followed by further discussion about Figure 

2’s handling of unit root testing when trend status is unknown.  

 

In Figure 1, a cointegration test is performed if Y and Z are both determined to have a 

random walk, both with or without a drift. One of two types of cointegration tests is used 

– the Engle and Granger (1987) test (in which case Figure 1 describes what we refer to as 

strategy EG) or the test suggest by Johansen (1988, 1991) and Johansen and Juselius 

(1990) (in which case Figure 1 describes what we refer to as strategy Jo). The Engle and 

Granger test involves testing whether  

02  can be rejected in the following equation after it has been estimated: 

 

ttt v 121
ˆˆ  ,         (15) 

 

where t̂  represents the residual at time t from a simple linear regression of Y on Z 

(including an intercept), γ1 and γ2 are constant parameters, and vt is an error term. The t-

value associated with the γ2 estimate is compared to a critical value from MacKinnon 

(1991) to perform this test. If cointegration is concluded using this test an estimated form 

of the vector error correction equation 
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is accepted (excluding b1 if no drifts are involved in the random walks of the variables, 

and with K* based on minimization of SIC) and is used for considering the predictive 

capabilities of the strategy.   

 

The cointegration test following Johansen (1988, 1991) and Johansen and Juselius (1990) 

starts by estimating the following vector error correction equation             
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where Xt  [Yt, Zt]´ and where Φ is excluded if no drifts are involved in the random 

walks of the variables. K* is determined by minimization of a multivariate version of the 

Schwarz information criterion in this case, again with a maximum of two lags. The test 

for cointegration is based on the trace of the estimated , using asymptotic critical values 

from the program associated with Mackinnon, Haug, and Michelis (1999). If 

cointegration is concluded, the single-equation error correction equation subsequently 

concluded is that using the same K* used in the cointegration test and with b1 = 0 if 

was constrained to be a zero vector in the cointegration test. However, in evaluating the 

predictive ability of the accepted model the estimated vector error correction model is 

used.19 

 

How to proceed when the trend status of the variable is unknown is a contentious issue. 

As shown in Figure 2, we have chosen a method in which under such circumstances the 

unit root is tested with a deterministic time trend included (despite the low test power this 

induces if it is unnecessary) since the actual size of the unit root test should then be close 

                                                           
19 In the Johansen methodology, reduced rank regressions are used. We calculate   ttt rX   πE , 

where Ωt includes all the augmentation lag variables and constants showing up outside the cointegrating 

vector at time t,  is the estimated parameters from a preliminary regression of X on Ω, rΩt is the vector 

of residuals from the preliminary regression of the variables of the cointegrating vector on Ωt, and  is the 
estimate of  ',  . 
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to its nominal size regardless of the true trend status of the variable, and then the trend is 

tested with the form of that test based on the result of the unit root test. This method, 

suggested in Elder and Kennedy (2001), is also easy to apply, using tests widely available 

in standard econometrics textbooks. However, some researchers may prefer to do 

sequential testing of the unit root, which includes testing for the unit root perhaps again 

after further testing suggests there is no trend in the variable.20 Other researchers may 

prefer first to perform a test for the trend that is robust to the stationarity status of the 

variable examined and then perform a test for the unit root with inclusion a deterministic 

trend in that test based the results of the previous test for the trend.21 In any case our 

simulations deal with situations both where the trend status is known and where it is 

unknown. The simulations of situations in which the trend status is known we find 

interesting in their own right and also have the additional benefit of providing 

information that avoids the contentious issue of how to proceed when trend status is 

unknown.   

 

5. Simulation Design 

 

In the next two sections we present results from Monte Carlo simulations to consider the 

performance of various strategies in choosing models from the ones listed in Table 1.22 

The results for every set of true parameter values we use are based on 10,000 Monte 

Carlo simulations using 50 observations, with 100 presample observations generated to 

reduce the effect of startup values on the results. The error term ut used in generating the 

Yt series and the error term t used in generating the Zt series are each independently 

drawn from the standard normal distribution. The starting lag values for Yt and Zt in the 

presample are zeros and the last presample observations are used for initial lags of the 

                                                           
20 Various versions of this process have been suggested in the past, for example in Dolado, Jenkinson, and 
Sosvilla-Rivero (1990), Enders (2004), and Ayat and Burridge (2000). Strategies of this type of course make 
rejecting the unit root more likely, but at the expense of over-rejection of the null hypothesis of a unit 
root for the given nominal size when the unit root exists. Hacker and Hatemi-J (2010) show the degree to 
which size is distorted using the Enders (2004) strategy and the gains from using the Elder and Kennedy 
(2001) strategy instead.   
21 A unit root test which is robust to trend status is provided in Vogelsang (1998) and Bunzel and 
Vogelsang (2005). 
22 The simulations are performed through a GAUSS program. 
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variables in the used 50 observations. In moving from one observation to the next, the 

time variable t increases by a discrete unit of one.  Formally the simulations converted the 

single equation processes denoted in Tables 1 and 2 into the associated vector 

autoregressive (VAR) process and generated the data based on the reduced form for the 

VAR system. The details of this conversion are given in the appendix. 

 

Each of the models in Table 1 is estimated with ordinary least squares using the 50 

observations. The number of lags in the explanatory variables does not affect the number 

of observations in these estimates, as the presample observations may be used for the 

lags. One may think of the presample observations used in this way as actually being part 

of the actual sample, but are used only for lags. We have two augmentation lags as the 

maximum considered in the simulations, so with the two-lag first-difference variables we 

require three extra lags (e.g. Yt-2 = Yt-2 – Yt-3 requires information on 3tY ). In models 

with an error-correction relation, how the model estimates are handled depends on which 

cointegration testing technique is used. If the Engle and Granger (1987) cointegration is 

being used, the parameters for the potential cointegrating vector are estimated first in a 

separate linear regression of Yt on Zt (including intercept),23 and the lagged residuals 1
ˆ
t , 

are used instead of )( 1211   tt ZccY  when estimating the other parameters in the error 

correction model. If instead the cointegrating testing methodology advocated by Johansen 

(1988, 1991) and Johansen and Juselius (1990) is being used, then the vector error 

correction model with cointegration restrictions is estimated using the reduced-rank 

regression technique associated with that testing and is used for predictive purposes 

instead of the corresponding single-equation error-correction models found in Table 1.  

 

Given a sample of the generated data we wish to find the strategies that are most helpful 

in providing an estimated model close to the one that actually generated the data. Each 

strategy based upon finding the model that minimizes one of the information criteria is 

referred to by the acronym for that information criterion. The strategy finding the model 

                                                           
23 When estimating the potential cointegrating vector coefficient parameters, the three presample 
observations used for lags elsewhere in the estimated model are used, as they would likely be used in 
practice to provide a small improvement to the estimates and they do not diminish the comparability of 
the models in Figure 1. 
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that minimizes the leave-one-out cross-validation measure is referred to as CV. The 

strategy based upon hypothesis testing as outlined in section 4 using the Engle-Granger 

test for cointegration (if any testing for cointegration is performed) is referred to as 

strategy EG. The strategy based upon hypothesis testing as outlined in section 4 using the 

Johansen (1988, 1991) test for cointegration (if any testing for cointegration is 

performed) is referred to as strategy Jo. We append to EG or Jo the nominal significance 

level used in each test in the hypothesis testing strategy, e.g. if strategy EG is used with a 

5% nominal significance level being used on every test, then we refer to it as EG-5%. We 

also consider some mixed nominal significance levels. The denotation EG-10/5 

represents the EG strategy in which all significance tests are performed at the 5% 

significance level except the unit root test which is performed at the 10% level. Jo-10/5 

represents the same strategy except the Johansen cointegration test is performed when a 

cointegration test is deemed necessary. The use of such a mixed nominal significance 

level is to deal partly with the issue that augmented Dickey-Fuller tests often have low 

power.24  

 

Each of the strategies simulated must choose from the set of models provided in Table 1. 

Sometimes we limit the models from Table 1 that may be chosen based upon pre-

knowledge about whether or not there is a trend in one of the variables, Y and Z.  If we 

wish to consider only models in which there is no trend in either variable, then we limit 

the choosable models to the odd-numbered models: 1, 3, 5, 7, 9, 11, 13, and 15. If we 

wish to consider only models in which there is a trend in one of the variables, then we 

limit the choosable models to the even-numbered models: 2, 4, 6, 8, 10, 12, 14, and 16.  

   

6. Performance of various model selection strategies for some selected true data 

generating processes 

 

                                                           
24 To get the size on various tests to match their nominal sizes when pretesting exists, some adjustments 
should be made. Maddala and Kim (1998) for example note that the pre-testing literature suggests that 
the nominal size that should be used with unit root tests should be as high as 25% so that sizes on later 
tests are more accurate. We do not allow for that much correction as we think more standard levels of 5% 
and 10% are more commonly used in practice despite the problems with matching nominal and actual 
sizes.  
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Evaluating the performance of model selection strategies is a difficult task, as there is an 

infinite number of possible “true” data generating processes. In this section we focus on 

various selected types of data generating processes and allow one parameter to change in 

each to generate response surfaces. This allows us to present what are some of the 

important strengths and weaknesses in each of the model selection strategies. We also 

introduce in this section three different types of performances to be considered for the 

response surfaces. These types of performances are considered again over a multitude of 

“true” data generating processes in the next section.  

 

The first type of performance we investigate is the ability of the various model selection 

strategies to choose the correct model when it is among the possible models to be chosen. 

For five model selection strategies (AIC, SIC, CV, and Jo-10%, Jo-5%, ) and six different 

types of data generating processes for Y, Figure 3 compares the response surfaces on the 

frequency of choosing the correct model (including correct number of augmentation lags) 

when there is known to be no trends in Y and Z so models with a trend are not choosable. 

In each part of Figure 3, the lowest value the varying parameter (e.g. b6 in Figure 3a) 

takes on is 0.00001, and in Figure 3e the varying parameter, –b3, is highest at 0.99999, so 

for the whole response surface the true data generating process is associated with only 

one model from Table 1. To illuminate how this figure should be understood, consider for 

example Figure 3a, in which the data is generated according to the equation 

ttt uZbY  61 , 00001.06 b with Z generated by the equation ttt ZZ  15.01 . 

Formally for all points along the response surface, the model is model 11.00 from Table 1 

(
ttt uZbbY  61
 with b1  0, b6  0) and we can appropriately say that what is being 

measured on the figure along the whole response surface is the frequency of choosing 

model 11.00, the correct model.  

 

What we see from the response surfaces in Figure 3a is that all the model selection 

strategies converge to choosing the correct model as b6 increases, as we would expect, 

and that the model selection criteria SIC, AIC, and CV have roughly similar performance 

to that of the hypothesis-testing strategies at choosing the correct model in this situation. 

The performance of SIC seems to closely follow the performance of Jo-5% for low b6 
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values and SIC performs best among all the shown strategies when b6 ≥ 0.6. AIC is the 

most successful at choosing the correct model if 0 < b6  0.5, but that also leads to the 

undesirable characteristic for AIC that if b6 is zero, AIC would be the least successful in 

choosing the model Yt = b1 + ut, 01 b . 

 

3a: Yt = 1 + b6Zt + ut  

 

3b: Yt = b7Zt + ut  

 

3c: Yt = 0.5Yt-1 +b8Zt-1 + ut 

 

3d: Yt = 0.5Yt-1 + Zt-1 + b10(Yt-1 -1-Zt-1)+ ut 

 

3e: Yt = 1 + b3Yt-1 + ut 

 

3f: Yt = 0.5Yt-1 + Zt-1 – 0.5(Yt-1 -1-c3Zt-1)+ ut 

 

Figure 3. Frequency of choosing the correct model given various true data generating 

processes, no trend in Y and Z assumed so models with trend not choosable; Zt is 

generated according to Zt = Zt-1 + t except in case 3a in which it is generated according to 

Zt = 1 + 0.5Zt-1 + t ; the varying parameter on horizontal axis is lowest at 0.0001 in all 

parts and is highest at 0.99999 in 3e. 

 

Figure 3b considers the situation in which Y is a random walk process related to Z 

according to the equation ttt uZbY  7 , with Z generated by the equation 
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ttt ZZ  1 , a random walk.  What we see from the response surfaces is that again all 

the model selection strategies are more successful at choosing the correct model as b7 

increases and that the model selection criteria are better performers than the hypothesis-

testing strategies above b7 = 0.4. Below that value, all the strategies seem to be close in 

performance. 

 

Figure 3c deals with Y being related to Z according to the equation Yt = 0.5Yt-1 +b8Zt-1 

+ ut, with Z generated by a random walk. What we see from the response surfaces is that 

again SIC is more successful at choosing the correct model as b8 increases, and that SIC 

performs quite similarly to the hypothesis testing strategies. Notably AIC and CV are 

considerably worse than SIC at choosing the correct model with b8 > 0.2. This may be 

attributed to AIC and CV to being less parsimonious in model selection than SIC, so they 

are more strongly tempted to choose the more complicated cointegration models, which 

also include the explanatory variables Yt-1 and Zt-1. Note that this was not a problem in 

Figure 3b, in which the model examined (model 7) had no other competing model that 

included the same explanatory variable. 

 

Figure 3d deals with a cointegrating relation between Y and Z as the true relation with Z 

generated as a random walk. The variable Y is generated according to Yt = 0.5Yt-1 +Zt-

1 + b10(Yt-1 -1-Zt-1)+ ut and we examine what occurs as -b10 varies.  We see all the 

strategies choose the correct model increasingly as -b10 increases in magnitude. The 

hypothesis testing strategies do poorly in choosing the correct model compared to the 

other strategies almost over the whole range. AIC and especially CV are successful, but 

by being too accepting of the true model, since when -b10 is close to zero they still have 

high acceptance rates. This different pattern for AIC and CV in comparison to SIC is 

attributable to these methods being not very parsimonious in model selection in contrast 

to SIC. 

 

Figure 3e  presents a more complicated situation. The variable Y in this case is generated 

independently from Z such that Y is a stationary process based on the equation  Yt = 1 + 

b3Yt-1 + ut , with -1 < b3 < 0. This figure is interesting because the response surface is 
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dealing with a model straddled between Y being a random walk with drift (if b3 = 0), and 

Y being a white noise (if b3 = -1; note –b3 is measured on the horizontal axis so the far 

right is where b3 = -1). In this figure the information criterion and cross-validation 

strategies have a low frequency of choosing the correct model when the variable on the 

horizontal axis, -b3, is close to 1 (due to the competing white noise model), have a high 

frequency in choosing the correct model when -b3 in the middle of the range between 0 

and 1, and oddly do well at choosing the correct model when b3 is close to zero. The SIC 

performance is similar to that of the hypothesis testing strategies except when b3 is close 

to zero. CV shows an awful performance in this diagram compared to information 

criteria. The unusual activity of the information criteria and cross-validation when b3 is 

near zero may be attributed to the fact that we are using prior knowledge that there is no 

trend in Y, so as b3 gets closer to zero the information criteria and the cross-validation 

measure reject what is apparently looking more like a trend because the trend alternative 

is not offered as an alternative. When no knowledge of a trend is used, this characteristic 

for the information criteria and cross validation vanishes (the response surfaces of these 

strategies then meet the left vertical axis at a more reasonable level of around 5%).  

 

Figure 3f deals with a cointegrating relation between Y and Z as the true relation. The 

variable Y is generated according to Yt = 0.5Yt-1 + Zt-1 – 0.5(Yt-1 -1-c3Z-t-1) + ut with Z 

generated as a random walk. In this figure we plot the response surface for strategy EG-

5% also, unlike in the Figures 3a-3e.25 The parameter c3, the slope parameter of the 

cointegrating vector, is allowed to vary from close to zero to a very large value of 10. In 

this figure, only the hypothesis testing strategies using the Johansen method, Jo-10% and 

Jo-5%, show the expected pattern of continuously increasing likelihood of choosing the 

correct model as the parameter c3 increases. The other strategies, including EG-5%, rise 

then fall in frequency of choosing the correct model as c3 increases.  

 

Notably the hypothesis testing strategies hardly ever choose the model correctly in Figure 

3f when c3 is close to zero, which is what we expect to some extent, but AIC, SIC, and 

                                                           
25 The response surface for EG-5% is not presented in those previous figures since it would not be 
substantially different from the response surface for Jo-5% in those other figures, and reducing the 
number of response surfaces presented helps in the visibility of the remaining response surfaces. 
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CV have substantially large probabilities of choosing cointegration in that neighborhood. 

The explanation for this oddity is similar to that for the unusual situation in Figure 3e 

when -b3 was close to zero; when c3 gets closer to zero the process of Y gets closer to 

getting a trend based on the constant created by the intercept term in the cointegration 

equation multiplied the -0.5 convergence parameter. Since we are using prior knowledge 

that there is no trend in Y, the information criteria reject what is apparently looking more 

like a trend because the trend alternative is not offered as an alternative. When no 

knowledge of a trend is used, this problem for the information criteria vanishes (the 

response surfaces of AIC and SIC then meet the left vertical axis at a more reasonable 

levels of around 0.047 and 0.038 respectively). 

 

Figure 4 covers the same situations as Figure 3 in the same order. In this case what is 

being examined is the frequency of each strategy choosing the correct relation type, i.e. a 

relation exists between Y and Z in levels, a relation exists between Y and Z only in first 

differences, a mixed relation, or no relation exists between Y and Z. Figures 4a, 4b, 4c, 

and 4d show patterns similar to their counterparts in Figure 3, with perhaps the most 

striking differences being CV’s notably stronger acceptance of the correct relation in 

Figure 4a compared to the other strategies for low values of b6 , AIC’s higher acceptance 

of the correct relation for low values of b8 compared to the other strategies in Figure 4c, 

and the fact that SIC does not outperform AIC and CV for higher values of –b10 in Figure 

4d. 

 

 

4a: Yt = 1 + b6Zt + ut  

 

4b: Yt = b7Zt + ut  

 

4c: Yt = 0.5Yt-1 +b8Zt-1 + ut 4d: Yt = 0.5Yt-1 + Zt-1 + b10(Yt-1 -1-Zt-1)+ ut 
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4e: Yt = 1 + b3Yt-1 + ut 

 

4f: Yt = 0.5Yt-1 + Zt-1 – 0.5(Yt-1 -1-c3Zt-1)+ ut 

 

Figure 4. Frequency of choosing the correct relation type given various true data 

generating processes, no trends in Y and Z assumed known so models with trend not 

choosable; Zt is generated according to Zt = Zt-1 + t except in case 4a in which it is 

generated according to Zt = 1 + 0.5Zt-1 + t ; the varying parameter on horizontal axis is 

lowest at 0.0001 in all parts and is highest at 0.99999 in 4e. 

 

 

Figure 4e indicates that there is a high acceptance of the true relation type of no relation 

between Y and Z by all the strategies over the whole range, except for CV and except 

when b3 is very close to zero. When b3 gets close to (but not equal to ) zero, which again 

means getting close to having a trend, then there is a sudden increase in frequency of 

acceptance of the true relation type by CV and a sudden drop in frequency of acceptance 

of that true relation type when using the Jo-10% and Jo-5% strategies. The inclusion of 

white noise as a separate choosable model is important to help the information criteria 

avoid accepting a relation between Y and Z when   some spurious correlation 

relationships between Y and Z exist between those variables; without it the frequency of 

choosing the correct relation type in this figure would be substantially lower for SIC and 

AIC for –b3 > 0.5  (CV would also perform worse).  
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Figure 4f, dealing with the frequency of choosing the correct relation type, is similar to 

Figure 3f which uses the same simulations, but it is notable that the response surface from 

EG-5% is now closely following that for Jo-5%. AIC, SIC, and CV show notably better 

performances at choosing the correct relation type (compared to their performances in 

choosing the correct model) at the high levels of c3, but similar to what we see in Figure 

3f, there is a decline in the acceptance of the true relation type as c3 increases at the high 

levels (although this is hardly perceptible for CV over the values of c3 given).  

 

Figure 5 repeats the situation in Figures 3f and 4f except the equation generating ΔY is 

Yt = 1+ 0.5Yt-1 +Zt-1 – 0.5(Yt-1 -1-c3Zt-1)+ ut  rather than the equation Yt = 0.5Yt-1 

+Zt-1 – 0.5(Yt-1 -1-c3Zt-1)+ ut , Z has a random walk with drift, and the trend status is 

considered unknown a priori.  In this situation a very different pattern emerges. As c3 

increases from zero, the information criteria still rise and fall in choosing the correct 

model, but the hypothesis-testing strategies seem hardly ever to choose the correct model. 

The hypothesis testing strategies do choose the correct relation type more often as c3 

increases, but now the information criteria choose the correct relation type substantially 

more often than the hypothesis testing strategies for 0.1 ≤ c3 ≤ 10.  

 

5a: frequency Choosing Correct Model 

 

5b: Frequency Choosing Correct Relation Type 

 

Figure 5. Frequencies of choosing the correct model and choosing the correct 

relation type for the data generating process Yt = 1 + 0.5Yt-1 + Zt-1 – 0.5(Yt-1 – 1 – 

c3Zt-1) + ut with an unknown trend status for Y and Z; Zt generated according to Zt = 

1 + Zt-1 + t ; c3 lowest at 0.0001. 
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One of the difficulties with the performance measures examined in Figures 3–5 is that 

choosing a model or relation type correctly may be not what we ideally want the strategy 

to do when the true data generating process is getting close to another model or relation 

type respectively. For example, in Figures 3d and 4d the performance of AIC and CV at 

choosing the correct model or relation type when b10 is not equal to zero but close to it 

seems wonderful compared to the other strategies (except for the implication for choosing 

the correct model or relation when b10 = 0), but the other strategies probably choose 

models with better predictive capability when b10  is close to zero since they are less 

frequently trying to estimate b10 under those circumstances; constraining that parameter 

to be zero would tend to provide better predictions than relying upon estimates of it. 

 

Measuring performance based on the ability to choose a model or relation type correctly 

also has the drawback that the performance jumps when a parameter goes from zero to 

slightly not zero. Those strategies that do best at choosing a model or relation type 

correctly when a parameter is zero are exactly those which do worst at that when that 

parameter is slightly not zero (assuming the parameter being zero or not distinguishes 

different models or relation types). It is odd to have a measure of performance that is so 

sensitive to such a slight difference. 

 

It seems also that measuring performance on the ability of a strategy to choose the correct 

model or relation type (a class of models) is unusual to apply in the social sciences since it is 

simply incredible to consider that the correct model is among the models we are considering. 

All our models in the social sciences are simply approximations to a far more complex 

reality. Under such circumstances it seems more natural to consider model-choosing success 

as more frequently choosing those models that have better predictive performance. 

 

Due to the above arguments, we consider the L2 distance measure described below for 

evaluating performance. For simulation s the L2 distance for ΔY is given by 
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where χt  is the vector of explanatory variable values at time t, and tsŶ  is the estimated 

value of ΔYt in simulation s given the estimated equation associated with a particular 

model and χt.
26 The term )|( ttsYE  is the expected value of ΔYt given χt and given we 

know the true parameters. L2s is thus simply the average squared difference between 

expected and estimated values for the dependent variable (McQuarrie and Tsai, 1998), 

ΔY, in simulation s. A lower L2s distance indicates better predictive performance. For our 

simulations we take the mean of L2s over the simulations for a given set of parameters 

and refer to that mean as L2.  

 

Parts a-f of Figure 6 cover the same situations as parts a-f in Figures 3 and 4 in the same 

order, but ln L2 is instead used as the performance measure. The natural log of the L2 

distance is used since there are in some cases rather large differences in L2 between 

strategies, so a rescaling is needed to better observe the differences in the patterns of L2. 

The differences between ln L2 values for different strategies represents the log of the ratio 

of the underlying L2 values. For example, since when b6 =0.5 in Figure 6a the ln L2 value 

for SIC is about -3 and the ln L2 value for Jo-5% is about -2.75, then that implies the L2 

for Jo-5% is about 28% higher than the L2 for SIC at that point (

%2828.0)1)75.2(5.1exp(  ). 

 

What is notable about these diagrams is the exceptionally good predictive performance of 

SIC compared to the hypothesis testing strategies in all six cases. That is true even in 

Figure 6f with high values of c3. If one recalls from the previous figures, that was the 

situation (shown in Figures 3f and 4f) in which SIC performed worst in choosing the 

                                                           
26 There exists a broader class of Lp distance measures that takes the pth power of the absolute difference 
between various pairs of values and find the mean over the resulting numbers. L2 simply uses p = 2. This 
measure is closely associated with, but not exactly same as the predictive mean square error, 

  TYYE
t

tststs /ˆ)|(
2

   . 
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model or relation compared to the hypothesis-testing strategies when knowledge of no 

trends in Y and Z was assumed. Even though SIC performs badly at choosing the correct 

model of cointegration at high values of c3 it is doing so for a good reason apparently—it 

is finding one or more competing models that have better predictive power. In this case 

the primary models it most frequently chooses as alternatives are models 9.02 (difference 

Granger-causal model, no intercept, two augmentation lags) and 13.02 (error correction 

model, no intercept, two augmentation lags). It is interesting to note that what seems to be 

very similar patterns of performance between SIC and the hypothesis-testing strategies in 

Figure 3a, Figure 3b, and the right half of Figure 3e results in such different patterns of 

predictive performance in the corresponding Figures 6a, 6b, and 6e. 

 

 

6a: Yt = 1 + b6Zt + ut  

 

6b: Yt = b7Zt + ut  

 

6c: Yt = 0.5Yt-1 +b8Zt-1 + ut 

 

6d: Yt = 0.5Yt-1 + Zt-1 + b10(Yt-1 -1-Zt-1)+ ut 

 

6e: Yt = 1 + b3Yt-1 + ut 6f: Yt = 0.5Yt-1 + Zt-1 – 0.5(Yt-1 -1-c3Zt-1)+ 

ut  
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Figure 6. ln L2 for various true data generating processes,  no trend assumed known 

so models with trend not choosable;  Zt is generated according to Zt = Zt-1 + t except 

in case 6a in which it is generated according to Zt = 1 + 0.5Zt-1 + t   

 

 

What is also notable about these diagrams is that SIC performs better than or about as 

well as AIC and CV in all six cases over almost all parameter values. One of the notable 

exceptions is that AIC and CV have somewhat better L2 performance for some low-

magnitude -b10 values in Figure 6d. Not surprisingly, AIC and CV pay for their previous 

poor performances in Figures 3c and 4c with substantially poorer predictive 

performances compared to SIC and Jo-5% in Figure 6c. Unusually Jo-10% has similarly 

poor predictive performance in Figure 6c, despite the good performance shown for this 

strategy in Figures 3c and 4c.  

 

We have re-run the simulations producing Figures 6 to deal with the situations where the 

researcher knows there is a trend in both variables or the researcher does not know the 

trend status. Under these circumstances we had Z following a random walk with drift and 

included an additional intercept of 1 in the Y generating processes in the cases of 

Figures 6b, 6c, 6d, and 6f (so no relation to Z, Z, or lagged Z would still result in Y 

having a trend in these cases). In those simulations we found similarly superior L2 

properties for SIC compared to the other strategies and otherwise the most interesting 

cases of changes in patterns are along the lines noted in the discussion with Figures 3e 

and 3f. 
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7. Minimizing the maximum regret 

 

This section investigates a much wider variety of true generating processes than 

presented in the last section. As may be expected, one true data generating process 

(including a specific set of parameter values), will favor one of the model selection 

strategies as being optimal whereas another true data generating process will favor 

another. Since the true data generating process is unknown to the researcher in practice, 

we use the principal of minimax regret over various parameter permutations as a way of 

evaluating the relative performance of the various strategies.27 Supposing that Gk is a 

measurement of goodness of a model (frequency of choosing the correct model, 

frequency of choosing the correct relation type, or -ln L2) for a given parameter 

permutation  when using model-choosing strategy k, then the regret of choosing strategy 

k rather than another strategy k  (not k) for the parameter permutation would be 

kk GG θθ  . Between two competing method-choosing strategies Ψ1 and Ψ2, the minimax 

regret strategy would be 

 

1 2

θ θ
( , )

arg min(max( ))k k
k

G G
 




  ,       (16) 

 

where  jik ,  and  is the set of all considered parameter permutations. Before 

presenting the minimax regret results for different regret measurements, we will describe 

the various parameter permutations we will use for the true model. 

 

For the true model generating Y based on equation (1) and generating Z based on 

equation (10), the assorted permutations of values from the following sets are used: 

 

   b1 = {0, 1},  b2 = {0, 0.5, 1},  b3 = {-1, -0.9, -0.5, -0.1, 0}, b4 = {0, 0.5}, b5 = {0, 0.3}, 

                                                           
27 Hacker (2010) uses a similar strategy of considering minimax regret for evaluating the performance of 
information criteria and hypothesis-testing strategies in determining unit-root status and trend status for 
a single variable. 
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   b6 = {0, 0.1, 1, 10}, b7 = {0, 0.1, 1, 10}, b8 = {-0.5, 0, 0.1, 0.5, 1, 10}, b9 = {0, 0.1, 1, 

10}, 

   b10 = {0, -0.1, -0.5, -0.8, -1},  c1 = {0, 1}, c2 = {0, 0.1, 1, 10}, 

   m1 = {0, 1},  m2 = {0, 1}, m3 = {1, 0.5}.28      

 

There are 14,745,600 permutations of these parameter values, but not all of those 

permutations are used since we exclude permutations that do not match one of the models 

listed in Table 1 (each model in that table is identified by an associated equation with 

nonzero parameters). When b10 = 0, for example, then permutations with c1 or c2 nonzero 

are not used and when b10  0, then only permutations in which only c1 and c2 both 

nonzero are used. As another example, a parameter permutation with b6 nonzero and b7 

nonzero is not used since there is no model in Table 1 that has that permutation. We also 

exclude the following: (I) permutations that result in model 15 or 16,29 (II) permutations 

that involve Z not following one of the processes listed in Table 2, (III) permutations in 

which Z follows a random walk (with or without drift) and the bi (i = 1,…10) parameters 

results in model 11 or 12 (current level relations without or with trend), and (IV) 

permutations in which Z is a stationary process (with or without trend) and the bi 

parameters results in model 13 or 14 (the error correction models). After the exclusions 

we have 1090 valid permutations of parameter values used for our simulations overall.  

 

When we make the assumption that the researcher knows that both variables have no 

trend, we also exclude those permutations of bi that would result in one of the even-

numbered models for Y’s process (models 2, 4, 6, etc) and those permutations of m1, m2, 

and m3 parameters that would result in a trend for Z. That results in 259 valid 

permutations of parameter values. When we make the assumption that the researcher 

knows that each of the variables has a trend, we also exclude those permutations of bi that 

would result in one of the odd-numbered models for Y’s process (models 1, 3, 5, etc) and 

                                                           
28 For purely programming purposes there are some rather benign variations to this list: when b10 is listed 
as -1, it is actually -0.99999, and when dealing with model 13, i.e. cointegration models, b1 = 0 and c1 = 0 
are in actuality respectively b1 = 0.00001 c1 = 0.00001.  
29 These models are excluded as true models since they cannot be chosen by the hypothesis choosing 
strategies, as seen in Figure 1.  
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those permutations of m1, m2, and m3 parameters that would result in no trend for Z.  That 

results in 286 valid permutations of parameter values. 

 

The b3 values are chosen to be in the range [-1, 0] to consider the unit root situation and 

various nonoscillatory stationary processes for Yt when b4 = b5 = …. = b10 = 0. The b10 

values are chosen to be in the range [-1, 0] to consider cointegration situations in which 

the speed of convergence to equilibrium is very fast (b10=-1) to very slow and to consider 

no-cointegration situations (b10=0). The superior performance of CV and AIC over SIC in 

choosing the correct model or relation type when there is a slow speed of convergence, as 

seen in the left part of Figures 3d and 4d, is thus included in the results of these 

simulations. The poor performance of information criteria relative to Jo-5% and Jo-10% 

in choosing the correct model for high values of c3, as seen in Figure 3f, is covered by 

having a high value for c3 (a value of 10) as a possibility in these simulations.  

 

The parameters b6, b7, b8 and b9 are chosen with a wide variety of values—including 

zero, a small value, and a large value—since a relation between Y (or ΔY) and Z or 

changes in Z is a major focus in this paper. The parameter b8 is allowed to take on a wider 

variety of values to provide richer consideration of how sensitivity of ΔYt to ΔZt-1 affects 

the ability of the various strategies in finding ΔYt is related to Zt-1 through the 

cointegrating vector. The maximum values for b4 and b5 are chosen so the sum of the 

coefficients for 1 tY  and 2 tY  sum to less than 1, thereby avoiding tY having a unit 

root. 

 

The strategies we consider in this section are broader than in the previous section. We 

consider AIC, AICc AICu and SIC among information criteria strategies, along with CV 

and six hypothesis-testing strategies: EG-10%, EG-5%, EG-10/5, Jo-10%, J0-5%, and Jo-

10/5.  

We measure regret in three different ways. The first is how much more frequently the 

wrong model is chosen compared to another procedure. Table 3 provides maximum 

regrets measured in this fashion over all the simulations when it is assumed that the 

researcher knows there is no trend. Each cell’s value shows the maximum regret (highest 
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increased frequency of choosing the wrong model) when using the procedure listed for 

the cell’s row rather than using the procedure listed for the cell’s column. For example, 

when using EG-5% rather than AIC, the maximum increased frequency of choosing the 

wrong model over all the simulations of various parameter permutations is 94 percentage 

points, whereas when using AIC rather than EG-5%, the maximum increased frequency 

of choosing the wrong model over all the simulations of various parameter permutations 

is 44 percentage points. Using the concept of minimax regret, AIC is more favorable to 

use in comparison to EG-5% since AIC has the lower maximum regret compared to EG-

5%. The table shows that SIC minimizes the maximum regret when compared to each of 

the other strategies. The shaded cells are those used in supporting that statement: 0.40 < 

0.47 (comparing SIC with AIC), 0.28 < 0.40 (comparing SIC with AICc), and so forth. 

 

There is a notable difference in this table between the performance of the information 

criteria and cross validation on one hand versus hypothesis testing strategies on the other. 

The maximum regrets of using any of the hypothesis testing strategies instead of any of 

the information criteria or cross validation are always at least 87 percentage points, while 

the corresponding maximum regrets of any of the information criteria or cross validation 

against any of the hypothesis testing strategies are always lower. 

 

 

 

 

 

Table 3. Maximum regret on frequency of choosing correct model, no trend in Y and 

Z in data generating process,  models with trends in these variables not choosablea 

 AIC AICc AIC

u 

SIC CV EG-

10% 

EG- 

5% 

EG-

10/5 

Jo- 

10% 

Jo- 

5% 

Jo- 

10/5 

AIC 0.00 0.14 0.36 0.47 0.49 0.38 0.44 0.40 0.78 0.78 0.42 
AICc 0.17 0.00 0.28 0.40 0.56 0.26 0.37 0.33 0.75 0.76 0.35 
AICu 0.38 0.22 0.00 0.12 0.63 0.09 0.11 0.10 0.70 0.71 0.11 
SIC 0.40 0.28 0.10 0.00 0.66 0.10 0.09 0.11 0.70 0.71 0.11 
CV 0.55 0.64 0.71 0.71 0.00 0.65 0.68 0.65 0.77 0.78 0.71 
EG-

10% 0.90 0.88 0.87 0.87 0.96 0.00 0.14 0.13 0.72 0.73 0.66 
EG-5% 0.94 0.93 0.90 0.90 0.96 0.14 0.00 0.16 0.72 0.72 0.54 
EG- 0.95 0.93 0.90 0.90 0.96 0.10 0.14 0.00 0.72 0.73 0.53 
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10/5 

Jo-10% 0.89 0.88 0.87 0.87 0.96 0.16 0.23 0.16 0.00 0.14 0.17 
Jo-5% 0.89 0.88 0.87 0.87 0.96 0.14 0.17 0.16 0.14 0.00 0.16 
Jo-10/5 1.00 1.00 1.00 1.00 1.00 0.76 0.82 0.75 0.83 0.84 0.00 

a Each cell’s value shows the maximum regret (highest increased frequency of choosing the wrong model) 

when using the procedure listed for the cell’s row rather than using the procedure listed for the cell’s 

column. The shaded cells are those associated with the strategy that has minimax regret compared to all 

other strategies. 

 

 

Table 4 presents maximum regrets in which regrets are measured as how much more 

frequently the wrong relation type is chosen compared to another procedure, using prior 

knowledge of no trend in Y and Z. Otherwise the table is developed in the same way as 

Table 3. The table shows that AIC minimizes the maximum regret when compared to 

each of the other strategies, with the shaded cells being those used in supporting that 

statement. As in Table 3, the maximum regrets of any of the hypothesis testing strategies 

are high against any of the information criteria or cross validation, while the 

corresponding maximum regrets of any of the information criteria or cross validation 

against any of the hypothesis testing techniques are always lower. 

 

Table 4. Maximum regret on frequency of choosing correct relation type, no trend 

in Y and Z in data generating process, models with trends in these variables not 

choosablea 

 AIC AICc 
AIC

u 
SIC CV 

EG-

10% 

EG- 

5% 

EG-

10/5 

Jo- 

10% 

Jo- 

5% 

Jo- 

10/5 

AIC 0.00 0.14 0.27 0.28 0.56 0.36 0.38 0.38 0.50 0.51 0.39 
AICc 0.18 0.00 0.14 0.17 0.65 0.27 0.30 0.27 0.50 0.51 0.25 
AICu 0.42 0.27 0.00 0.03 0.76 0.50 0.53 0.50 0.63 0.55 0.14 
SIC 0.47 0.32 0.06 0.00 0.79 0.52 0.54 0.51 0.67 0.58 0.15 
CV 0.64 0.70 0.76 0.77 0.00 0.64 0.71 0.71 0.64 0.71 0.71 
EG-

10% 0.90 0.89 0.87 0.87 0.94 0.00 0.15 0.13 0.67 0.67 0.68 
EG-5% 0.94 0.93 0.92 0.91 0.95 0.09 0.00 0.02 0.71 0.70 0.55 

EG-

10/5 0.94 0.93 0.91 0.91 0.95 0.10 0.15 0.00 0.70 0.69 0.55 
Jo-10% 0.86 0.85 0.84 0.84 0.94 0.13 0.15 0.15 0.00 0.15 0.17 
Jo-5% 0.88 0.87 0.86 0.86 0.95 0.10 0.09 0.09 0.14 0.00 0.11 
Jo-10/5 0.97 0.97 0.96 0.96 0.98 0.84 0.86 0.83 0.85 0.88 0.00 

   a Each cell’s value shows the maximum regret (highest increased frequency of choosing the wrong 

relation type) when using the procedure listed for the cell’s row rather than using the procedure listed for 
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the cell’s column. The shaded cells are those associated with the strategy that has minimax regret compared 

to all other strategies. 

 

 

 

Table 5. Maximum regret on ln L2, no trend in Y and Z in data generating process, 

models with trends in these variables not choosablea 

 AIC AICc AIC

u 

SIC CV EG-

10% 

EG- 

5% 

EG-

10/5 

Jo- 

10% 

Jo- 

5% 

Jo- 

10/5 

AIC 0.00 0.16 0.71 1.09 0.18 0.42 0.94 0.64 0.51 1.00 0.80 
AICc 0.13 0.00 0.56 0.94 0.22 0.27 0.79 0.51 0.36 0.85 0.65 
AICu 0.36 0.23 0.00 0.38 0.44 0.01 0.23 0.25 0.02 0.28 0.25 
SIC 0.42 0.35 0.12 0.00 0.50 0.00 0.01 0.11 0.00 0.01 0.12 
CV 0.29 0.43 0.88 1.25 0.00 0.59 1.11 0.86 0.67 1.16 0.97 
EG-

10% 8.20 8.24 8.29 8.29 8.13 0.00 2.48 2.14 2.24 2.75 2.59 
EG-

5% 7.34 7.38 7.43 7.43 7.27 0.72 0.00 0.72 0.72 1.23 1.05 
EG-

10/5 7.95 7.99 8.03 8.04 7.89 0.18 1.64 0.00 1.37 1.86 1.53 
Jo-

10% 7.96 8.00 8.05 8.05 7.88 0.16 0.98 0.84 0.00 1.12 0.88 
Jo-

5% 7.11 7.15 7.20 7.21 7.04 0.72 0.13 0.72 0.71 0.00 1.04 
Jo-

10/5 7.61 7.66 7.70 7.71 7.54 0.18 0.71 0.00 0.19 0.89 0.00 
a Each cell’s value shows the maximum regret (greatest increase in the ln L2 distance) when using the 

procedure listed for the cell’s row rather than using the procedure listed for the cell’s column. The shaded 

cells are those associated with the strategy that has minimax regret compared to all other strategies. 

 

Table 5 presents maximum regrets when regret is measured as how much higher the ln L2 

distance is compared to that when using another procedure, using again prior knowledge 

of no trend in Y and Z. Otherwise the table is developed in the same way as Tables 3 and 

4. The table shows that SIC minimizes the maximum regret when compared to each of 

the other strategies, with the shaded cells being those used in supporting that statement. 

As in the previous two tables, the maximum regrets of any of the hypothesis testing 

strategies are higher than those of any of the information criteria or cross validation, 

while the corresponding maximum regrets of any of the information criteria or cross 

validation against any of the hypothesis testing techniques are always lower. 
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It is relevant at this point to mention that measuring regret in terms of ln L2 instead of in 

terms of L2 tends to give more advantage to more parsimonious model selection 

strategies.  The fact that model 1.00, which requires no estimation, is a possible model 

creates an oddity that a strategy that always chooses that model will have minimax regret 

in terms of ln L2 compared to other strategies. This arises since when that model is the 

true model, that strategy will have L2=0, so the positive L2 of other strategies will result 

in the maximum regret of using them being in essence infinitely worse when considering 

differences in ln L2 (of course ln L2 is not calculable then). Notably, having model 1.00 as 

the true model does not provide the worst-case ln L2 scenario for hypothesis testing 

strategies against the other strategies (this is fortunate since it is not desirable to have this 

unusual case drive the results), although it does provide the worst-case ln L2 scenario for 

AIC, AICc, AICu, and CV against SIC when there is known to be no trend (as in Table 5) 

or when the trend status is unknown, as in Table 7 which will be introduced 

immediately.30  

 

Tables 6 and 7 are analogous to Table 5 in that they are dealing with the maximum regret 

on the 2ln L  distance. They differ only in that Table 6 deals with the situation in which 

the researcher has correct prior knowledge that there is a trend in both variables, and that 

Table 7 deals with the situation in which the researcher does not have prior knowledge 

about the trend status of the variables. As in Table 5, SIC is the best performer in 

minimizing the maximum regret in Tables 6 and 7. 

 

Table 6. Maximum regret on ln L2, trend in Y and Z in data generating process, only 

models with a trend are choosablea 

 AIC AICc AIC

u 

SIC CV EG-

10% 

EG- 

5% 

EG-

10/5 

Jo- 

10% 

Jo- 

5% 

Jo- 

10/5 

AIC 0.00 0.19 0.47 0.61 0.21 0.76 0.90 0.77 0.83 1.06 0.94 
AICc 0.18 0.00 0.32 0.51 0.28 0.68 0.81 0.68 0.74 0.96 0.84 
AICu 0.41 0.25 0.00 0.19 0.52 0.41 0.55 0.42 0.43 0.65 0.80 
SIC 0.42 0.26 0.07 0.00 0.53 0.34 0.41 0.30 0.35 0.47 0.82 
CV 0.21 0.39 0.66 0.70 0.00 0.85 0.95 0.82 0.89 1.11 0.97 

                                                           
30 It is a concern for this study that at a low sample size, the information criteria investigated here can 
have difficulty in distinguishing a nonstationary process from a stationary one in comparison to typical 
unit-root tests, especially when there is a trend in the data generating process.  
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EG-

10% 
13.4

1 
13.4

1 
13.4

1 
13.4

1 
13.4

1 0.00 6.08 6.07 
11.2

4 
11.3

9 
11.3

0 
EG-

5% 
12.6

6 
12.6

6 
12.6

6 
12.6

6 
12.6

6 0.86 0.00 0.15 
10.5

3 
10.6

8 
10.5

9 
EG-

10/5 
12.7

7 12.9 
13.0

8 
13.1

1 
12.7

4 0.86 6.08 0.00 
11.2

3 
11.3

8 
11.2

9 
Jo-

10% 6.64 6.64 6.64 6.64 6.63 0.67 0.69 0.70 0.00 1.19 1.08 
Jo-

5% 5.81 5.81 5.82 5.82 5.81 0.86 0.60 0.61 0.86 0.00 1.30 
Jo-

10/5 6.42 6.43 6.43 6.43 6.42 0.86 0.32 0.00 0.86 1.18 0.00 
a Each cell’s value shows the maximum regret (greatest increase in the ln L2 distance) when using the 

procedure listed for the cell’s row rather than using the procedure listed for the cell’s column. The shaded 

cells are those associated with the strategy that has minimax regret compared to all other strategies. 

 

 

Table 7. Maximum regret on ln L2, both models with a trend and models without a 

trend are used in data generating process, all models in Table 1 choosablea 

 AIC AICc AIC

u 

SIC CV EG-

10% 

EG- 

5% 

EG-

10/5 

Jo- 

10% 

Jo- 

5% 

Jo- 

10/5 

AIC 0.00 0.22 0.65 1.03 0.20 0.87 1.23 1.10 0.87 1.23 1.10 
AICc 0.17 0.00 0.52 0.89 0.27 0.77 1.10 0.97 0.77 1.10 0.97 
AICu 0.41 0.25 0.00 0.37 0.48 0.51 0.72 0.54 0.51 0.72 0.54 
SIC 0.44 0.30 0.12 0.00 0.53 0.51 0.55 0.43 0.52 0.56 0.45 
CV 0.26 0.47 0.85 1.09 0.00 0.93 1.30 1.17 0.93 1.3 1.17 
EG-

10% 
13.5

8 
13.6

1 
13.6

8 
13.7

1 
13.5

9 0.00 5.97 5.74 
11.1

9 
11.3

4 
11.2

6 
EG-

5% 
12.8

3 
12.8

6 
12.9

3 
12.9

5 
12.8

4 1.49 0.00 0.84 
10.5

1 
10.6

5 
10.5

7 
EG-

10/5 12.9 
12.9

2 
12.9

9 
13.0

2 
12.9

1 2.55 5.34 0.00 
11.1

7 
11.3

2 
11.2

4 
Jo-

10% 7.72 7.77 7.85 7.86 7.70 0.30 0.36 0.76 0.00 1.24 2.39 
Jo-

5% 7.32 7.34 7.38 7.40 7.32 1.19 0.27 0.61 1.12 0.00 2.40 
Jo-

10/5 7.50 7.56 7.63 7.64 7.49 1.95 1.56 0.00 1.87 1.62 0.00 
a Each cell’s value shows the maximum regret (greatest increase in the ln L2 distance) 

when using the procedure listed for the cell’s row rather than using the procedure listed 

for the cell’s column. The shaded cells are those associated with the strategy that has 

minimax regret compared to all other strategies. 
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9. Inference and application in practice 

 

The extensive use of information criteria to select among time series models, as the 

previous section’s findings support, should be an aid to the researcher in finding a 

credible empirical model. However, once one finds an empirical model that is most 

supported by the data, as indicated by the minimization of an information criterion, there 

still remains the question of whether the data strongly or weakly supports that model over 

the others. One could try to complement a model chosen through information criterion 

minimization with more standard hypothesis tests and confidence intervals to get at this 

issue of how strongly the data support a particular model. However, the legitimacy of the 

nominal sizes of hypothesis tests and the nominal degree of confidence for each 

confidence interval may be seriously questioned as the data-driven pre-selection of the 

model tested would likely affect actual sizes and actual degrees of confidence. 

Alternatively, one could calculate a weight for each model i, using the formula 

 
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r r
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1
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2

1
exp(

)
2

1
exp(

,        (17) 

where ICICii min , ICi represents the value of the information criterion for model 

i, min IC is the value of the information criterion for the choosable model that minimized 

the information criterion, and R is the number of models considered. In the case of AIC 

and AICc this weight arguably represents the degree of evidence supporting model i 

being the “K-L best” model (the model that minimizes that Kullback-Leibler (1951) 

distance) from among the R models.31 In the case of SIC, this weight arguably represents 

the weight of evidence supporting model i being the model  with the highest posterior 

probability of being the “quasi-true” model, i.e. the one which SIC would choose 

asymptotically, from among the R models (Burnham and Anderson, 2002). The weight wi 

                                                           
31 The Kullback-Leibler (1951) distance measures how close a probability function is to the true probability 
model which generates some data. Akaike (1978) advocated interpreting exp(-0.5×ICi) multiplied by a 
constant as the likelihood of model i being the K-L best model, a position supported by Bozdogan (1987) 

among others. This interpretation implies that exp(-0.5i) reflects the likelihood of model i being the K-L 
best model relative to that likelihood for the model that minimizes the information criterion (as noted in 
Akaike (1983)) and wi reflects the probability that out of all the models considered, model i is the K-L best 
model (Burnham and Anderson, 2002). 
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can be calculated for each model and the models ranked according to the magnitude of 

the weight. 

 

 It is inappropriate to rely upon just information criteria and/or hypothesis testing in 

investigation for empirical studies, as a little extra thought and checking of residuals by 

the researcher can go a long way in avoiding erroneous conclusions. Hendry and Richard 

(1983) suggested six criteria that should be met for a chosen model to be acceptable. We 

repeat them here and discuss them in the context of using information criteria extensively 

in choosing among time series models as we have advocated. 

  

One criterion for a chosen model to be acceptable is that the chosen model should be 

data-admissible, allowing logical predictions, and another criterion is that the chosen 

model should be theory-consistent. The practitioner should for example check to make 

sure the signs on the coefficient estimates are logical and as a group are not leading to 

unusual predictions for the dependent variable. A third criterion is that the explanatory 

variables should display weak exogeneity. In the context of time series models this is an 

exceptionally important issue since in particular with macroeconomic data, there is 

considerable feedback among many of the variables. If one is investigating the relation 

between two time series variables and such exogeneity does not exist, then considering 

only reduced forms of vector autoregressive (VAR) models rather than the single 

equation models of this paper would be a suggested alternative, and since information 

criteria exist for choosing among VAR models, the methodology we have suggested here 

could conceivably work acceptably in extension to that environment. 

 

A fourth criterion suggested by Hendry and Richard is that the parameter estimates 

should display constancy. The degree to which parameters estimates vary between the 

chosen model and the most closely competing models can provide information on how 

much confidence we should have in those estimates. We suggest that the higher the 

competing models are in their strength of evidence weights, wi, the more attention we 

should pay to how their parameter estimates differ from those of the chosen model. Lack 

of parameter constancy can seriously diminish predictive reliability. One promising way 
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of improving predictive reliability under such circumstances is through model averaging 

based on the strength of evidence weights, i.e. finding a new estimated model by 

averaging over each considered parameter across models, with the average being a 

weighted mean based on the strength of evidence weight, wi (Burnham and Anderson, 

2002; Akaike, 1978, also had some early ideas along these lines). 

 

A fifth criterion that Hendry and Richard found important is that the chosen model should 

be data-coherent, i.e. patterns in the residuals should not exist. Visual inspection of the 

residuals of the chosen model based is a powerful tool in this regard. One could also 

extend the use of information criteria to look for patterns in the residuals. The researcher 

could for example estimate the equation used for the Breusch-Godfrey test of first-order 

autocorrelation, estimate it again under the null hypothesis of no first-order 

autocorrelation, and use an information criterion to decide which of the two estimated 

equation is more supported by the data. 

 

The last criterion of Hendry and Richard is that the chosen model should be 

encompassing, i.e. be able to explain the results of rival models. The chosen model using 

an information criteria tends to be superior at explaining the data at hand than the other 

considered models in the sense of approximately better predictive performance with that 

data. This is particularly the case with AIC (or AICc or AICu) as they are built to find the 

model that is K-L best. The simulations in this paper suggest that SIC leads to good 

predictive results also in terms of ln L2, although predictive capability is not its explicit 

aim. The issue of encompassing is likely more problematic with hypothesis testing, since 

comparisons between non-nested models is more difficult then.  

 

10. Conclusions 

 

Since time series data analysis is used enormously in empirical studies more research on 

the important issue of model selection is warranted. It is important to take into account 

model uncertainty since there might be many potential models. This issue seems to be 

frequently neglected by practitioners currently in empirical studies. It is common practice 
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to present and rely on a single model that the practitioner has tediously ended up with by 

multiple steps of hypothesis testing. Since many of the models considered are usually 

nested it means that the problem of mass significance might very well exist.  

 

In this paper we suggest using minimization of an information criterion more extensively 

for model selection in a time series environment. Our simulations show that this 

procedure often works well and better than hypothesis testing approach in choosing an 

appropriate model. Given the goal of an information criterion compared to a hypothesis 

test, this is perhaps not surprising, but it is also not so obvious given the complexities of 

issues involved with time series data, particularly those dealing with possible 

nonstationarity of the data. The use of an information criterion also has additional 

advantages in that it is simple to use and it can rank potential models based on how much 

the data support each model. How much the data support a particular model can be 

estimated through a weight calculated by considering the difference between the 

magnitude of the information criterion for a model and that magnitude for the model in 

which that information criterion is minimized. This weight may be calculated for each 

model considered and the resulting weights can be used to average the parameters across 

models, resulting perhaps in a new model with predictive reliability that is superior to 

that of the single model most supported by the data.   
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Appendix: Converting Single Equation Processes into Associated VAR Processes 

In this paper various scenarios will be simulated, limited to the three broad 

categorizations of two variables with no cointegration, two variables with cointegration, 

and three variables with cointegration. 

 

In the two-variable case when there is no cointegration, the matrix representation is given 

by 
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or equivalently, 
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Solving (A.1) for Xt, we get  

tttttt wNIXMXMXMDX 1

0332211 )( 

       (A.2) 

 

where DNNI 1

0 )(   , ii NNIM 1

0 )(   for i = 1, 2, 3. 

Equation (A.2) is used to generate the data in this situation. 

 

In the two-variable case where there is cointegration, the matrix representation is given 

by 
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. The first columns in ρ and β constitute together (i.e. the first row of 

  , ) the only possible cointegrating vector; the second columns on those matrices do 

not provide a cointegrating vector since there is at most only one non-zero parameter in 

it. 

 

Solving (A.3) for Xt we get  
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Equation (A.4) is used to generate the data in this situation. 
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