This course introduces the architectural engineering professions, architectural engineering design process and building construction systems integration. The course presents related communication skills and digital tools. It provides students with basic design skills and formal visual principles through design exercises with emphasis on developing creativity and effective communication.
The course presents the basic skills and techniques required for analysis and design of structural elements as members in a complete building structural system. The course discusses the preliminary sizing of members, calculation of design loads, and structural member forces calculation. In addition, the course covers equilibrium, reactions, member forces, and deflections for trusses, frames, and various structural elements of building system. It introduces students to design process of structural systems in buildings.
This course provides an introduction to building construction processes, techniques and systems. The course addresses the basics of building structure systems and construction methods of roofs, floors and walls. Additionally, it covers construction methods and components of vertical circulation and openings. Emphasis is placed on the relevant building construction materials and processes of assembling and installation, utilizing building construction codes and standards within a scope of sustainability. .
This course aims at introducing students to concepts related to fundamental architectural principles like form, function, order, rhythm and harmony. Students explore in small-scale projects, the formation and manipulation of spaces in relationship to building site, circulation needs, as well as the relationship between the architectural and structural elements of design. The studio introduces computation, geometric techniques, digital drafting and visualization.
This course provides an integrated study of building construction methods, equipment and safety in construction site. Emphasis is placed on common building construction equipment and their acquisition decisions; managing building site logistics and construction operations; sub-structure and super-structure activities, construction waste management; and health and safety in construction. The course also provides an introduction to principles of sustainable building construction and site surveying.
This course aims at developing students' analytical skills and awareness of the building physical, social and cultural contexts. Students are introduced to the engineering design process, as well as assessment and application of alternative structural, mechanical and electrical systems. Studio activities include simulations of building environments, and advanced architectural presentation techniques.
This course aims to develop student abilities to interpret architectural styles, visual representations of architectural works and to understand the theoretical, cultural and technical contexts of architectural production. The course assesses the historic built environment of Africa, Ancient Egypt, and the Greco‐Roman/classical realm and examines Byzantine, Romanesque, Gothic and broadly Renaissance arts and architecture. The timeframe covered is from 3000 BC to the 1600 AD, with some later examples to demonstrate historical influence.
This course covers fundamentals for circuit design analysis; alternatives for circuit design, resonance and quality factors, mathematical and physical models and analysis techniques required for building applications. Estimating electrical loads for lighting and equipment, specification and selection of equipments and electric fixtures, distribution and developing wiring diagrams.
This course aims at understanding the physical properties of sound and light and their impact on the design of building systems; introduction to illumination, Daylighting, lighting fixtures and lighting systems in buildings; building's design requirements of illumination; and Lighting calculation methods and measurement techniques. Acoustical design of building spaces and noise control; methods of treatment and selection of appropriate finishing materials to fulfill standard specifications of internal acoustical and lighting environments. Introduction of architectural acoustics calculations and measurement techniques.
This course aims at introducing the knowledge necessary for the introduction of Engineering Systems into Buildings from their theoretical working knowledge to their integration into buildings. Topics covered include selection of appropriate HVAC system in building and climatic context, Determination of cooling capacity for the building, Sizing of the air handling unit system and air supply ducts. Introduction of Fire safety systems. Water supply, drainage, and waste disposal. Integrates alternative cooling and energy systems integrated into buildings deemed important for sustainable built environment. The course introduces building codes and sustainability codes in regional context.
This course examines contemporary world architecture from its roots in early twentieth century modernism in America and Europe and on through its global expansion into various regions of the world, including the Arab world. The course reviews the impact of regional forms and traditions on early modern architecture, and surveys later modernist proposals for a universal or international architecture. The course reviews regional and local reactions to these formulations through the analysis of examples of 20th and 21st century architecture, theory, and criticism that question this global agenda and attempt to negotiate the tensions between global ideals and local conditions.
The course introduces the relationship of structural systems, building use and configuration and related serviceability issues. The course covers the design of concrete and steel building structural elements including beams, columns for shear, bending, and axial loadings. Structural design covers additional elements such as steel tension members, simple concrete slab systems, and truss sections.
This course deals with advanced building construction systems including sustainable materials, building construction technology, long span structures and building envelop. It covers modular coordination in building design and construction as well as the basic knowledge of various building engineering systems including plumbing, electrical, HVAC and fire protection, with integration of building engineering systems.
This course develops a comprehensive design process with focus on systems design and integration of a mixed-use building, issues of technology, ecology and energy. Exercises focus on the design of building systems and components, building structural design, building codes, design for safety in buildings, architectural expression, integration strategies and applications involving the mechanical, electrical, energy, and building management systems.
Introduction to environmental control systems in architecture. The human thermal comfort in the internal environment. Heat stresses and the behavior of building envelope. Ventilation and air movement requirements and patterns. Natural cooling techniques in buildings (passive and active) and their impact on human comfort. Approach to energy conservation. Observations and measurements equipment.
This course aims introducing students to principles of Construction Project Management and Organization. Topics includes: Strategic Management and Project Selection; Project Organization and Structures; Project Delivery Methods; Cost Estimating; Risk and Value Management. Students will also acquire knowledge in: Managing Project Teams; Information and Communication Management; Construction Sustainability; and BIM application in construction. Introduction to famous CM tools.
This course aims at providing students with the knowledge and skills required to plan, schedule, and control construction projects. Topics include: arrow and precedence networks; time calculations using critical path method (CPM), program evaluation and review technique (PERT); resource allocation and leveling; integration of risk and safety plan; advanced scheduling techniques, progress monitoring and earned value analysis; budget allocation and cash flow; project crashing and control; labor and equipment productivity and determination of activity duration. Applications and exercises using specialized planning, scheduling and BIM software.
This course aims at offering career exploration opportunities for students as well as opportunities to correlate their academic preparation to the reality of conducting professional practice, to interact effectively with others in practice, to develop professional skills and the ability to communicate effectively in the workplace, to deal with the challenges of engineering businesses environment and to gain true practical experience that is necessary for their future practice as architectural engineers after graduation. Such practical experience strengthen students competency in handling architectural design, building construction and construction management of real projects. Students training will further improve their ability to work in teams, to supervise buildings under construction, conduct field investigations and quantity surveying, to develop execution and shop drawings, to write appropriate specifications, contract documents and run cost analysis and estimation, and legal issues in construction.
This course aims at introducing students to theory of building systems integration, and systems-based approach to the design process. Students are engaged in an integrated engineering design process of a small-scale project with a real-life design problem. Students use building simulation tools to analyze and propose for integrated performance of building systems. Through design projects, students explore emerging directions in engineering design, along with emerging directions and tools for engineering design.
Study of different construction methods of architectural spaces and the selection of suitable finishing materials related to function; evaluation of technical and aesthetic aspects of interior and exterior finishing materials; technical criteria for selection and evaluation of finishing materials; architectural working details and workshop drawings.
This course focuses on advanced levels of experimentation, analysis, synthesis and application of existing and emerging digital applications for simulating urban & building form and performance at an integrated level. Areas of emphasis include 3D modeling tools, modeling of urban, building, environmental, acoustical and visual performance, as well as energy consumption and production. Projects focus on resolving complex and integrated urban and engineering design solutions through digital simulations.
This course aims at introducing the principles and theories of preparing Specification and Bill of Quantities documents for construction projects involving building components such as site work, concrete, masonry, steel, glass, finishes, and carpentry. Bidding requirements, construction contracts, methods of specifying, substitutions, and warranties with emphasis on building codes as applied to construction projects. Use of relevant application software packages.
This course aims at offering an opportunity to study selected architectural topics of interest. Topics are related to one area of architecture education. Application varies depending on selected topics and conducted under the supervision of a faculty member.
Characteristics of hot climates and analysis of comfort conditions. Employing natural resources to improve harsh desert conditions. Studying the adverse impact on energy costs, greenhouse gas emissions, and environmental problems. Learning sustainable design and urbanism from vernacular architecture and settlements and new innovative constructions. Integrative design with performance analysis using simulation tools. Detailing design and technologies to shape the built environment: cool microclimates and greenery, advanced building skins, building materials, passive cooling and integration with energy efficient active systems.
This course aims at introducing housing and urban design theories. Topics include housing typologies, organizations and processes, housing management and development, characteristics of urban spaces, strategic management, public policy analysis, housing research and innovations in housing and urban spaces.
This course aims at introducing city planning theories and processes, including topics such as city forms, neighborhoods, urban systems; land use planning. Basic principles of infrastructure planning, operation and design of physical infrastructure system including roads, services, public transportation, public open spaces and facilities
This course aims at studying basic concepts and fundamentals of contraction bidding and contract documents. It introduces students to the deployment of FIDC conditions of contracts for construction. Topics covered include: project delivery methods and contract types; general and supplemental conditions; pre qualification of contractors; invitation to bid; construction contract agreement; subcontracts agreements, liquidated damages, time extensions, insurance, construction bonds, change orders; claims, disputes and arbitration.
This course develops a capstone design project related to the real needs of society. An engineering design process is initiated through research, and then developed though literature review, data gathering, analysis, initial design development, assessment of alternatives and project documentation. This course emphasizes research, analysis, conceptual design development, evaluation of alternative concepts, and the production of a preliminary technical report and visual presentation materials. The course provides overall preparation for the Graduation Project II course.
This course develops a final capstone design based on initial development previously prepared during the Graduation Project I course. Further project research is conducted, detailed engineering design solutions are prepared, design alternatives are evaluated and performance verification is conducted. Submissions include a final technical report and supporting visual materials.
Research methods and design appropriate to concentrations areas. Qualitative and quantitative methods of research, survey research,sampling, and data collection. Selecting and defining a problem; planning the research program; developing and testing hypothesis; collecting, classifying, evaluating, and analyzing evidence; drawing conclusions; and presenting results
Students present and debate advanced architectural research topics within the graduate program field under the facilitation and steering of a faculty. Guest speakers including faculty may be invited as appropriate to address current research issues pertaining to architectural engineering
City historical development, relation to resulting urban form, and process and mechanism used under rapid urbanization, planning processes as related to urban policies, analysis and prediction of urban growth both social and spatial, rapid growth and its impact on the social fabric, urban cultural identity, economic system and sustainability, Off-shore urban expansions, dynamics of urbanization pattern, center shifting, functional use and zonal growth and decay, urban overall aesthetics perception and its role in shaping a city?s contemporary identity. Legal aspects: zoning, conservation, land use, restoration, and protection of the environment.
Goals, concepts, and theories, energy and climate, environmentally sound contextual design, sensitive site environmental building design, design inherited energy consumption, water usage and indoor air pollution, green buildings, renewal, retrofitting, reuse, and recycle design consideration, efficiency, well-being of occupants and its impact on space functional usability and productivity, role of design professions in promoting sustainable environments, strategies for conserving energy, water, materials, and land, rating, assessment and certification, investigating computer-based applications available for sustainable design decisions, selected case studies.
A non-class course where each student proposes and conduct a meaningful building research relevant to his/her thesis/graduate project topic under the supervision of the assigned course faculty. Student must submit a major research report on his/her topic and its outcomes by the end of the semester
This course aims at introducing students to the advanced techniques of project management and control. This includes topics such as the life cycle of a project, functions of project management, project analysis and evaluation, comparison of alternatives, project screening and selection, project organization and structures, work breakdown structure, and management of human resources in projects. Students will also acquire knowledge in design management, risk management, conflict management and resolution, introduction to supply chain management, project monitoring and control, advanced scheduling techniques, introduction to simulation of engineering operations, cost analysis and management, and introduction to value engineering.
Urban morphology and urban identity within a regional and global dimension. Internationalism and regionalism impact on city form and image. Complexity of urban projects as seen in the difference between the intended conceptual models and actual constructed developments. Principles of developing high density projects using vertical extension (i.e. towers & skyscrapers) for housing, business and commercial projects.) Means to humanize social and spatial dimensions of urban developments within the built environment while addressing sustainability at both urban and regional Levels. Influence of economic dependency on tourism on keeping cultural identity, urban modernization, cultural heritage regeneration. Redefining traditions in a globalized urban context and its impact on the meaning of a place. Review of city contemporary urbanism and Gulf States cities as new frontiers in urban development.
The course addresses tools and techniques for effective practice of urban & regional master planning. Review of the urban landscape as it progresses in scale and complexity from the dwelling space to the dispersed urban metropolitan city and its regional infrastructural dimension. Balancing between the need to conserve the local traditional and historical character and the need to adopt and implement modern approaches to achieve planning modernity that serve well the urban residents in existing cities and towns. The topics of discussion are based on issues presented in readings and lectures.
This course addresses innovative and contemporary issues in architectural design that illustrates the complexity and diversity of architectural design and construction of irregular and complex constructed facilities with emphasis on contemporary architecture in the region. Design analysis of relevant both constructed and conceptualized architectural works of most visionary internationally renowned architects that contributed to the new movements in architecture. The topics of discussion are based on issues presented in readings and lectures that focus on mega projects with examples from Gulf States, Asia and the world.
Introduction to architectural design criticism, emphasizing contemporary approaches and methods of criticism and their application. Systematic logical process, logic and reasoning applied to architectural design conceptualization and development. Topics include elements of design logic and definition, argumentation of spatial analysis, deduction, and induction, design critical-thinking and inquiry. Methodological approach to design problem-solving and decision making processes. Satisfying space design multiple constraints (e.g. function, site, cost, codes and standards, and technology requirements).
Concepts and techniques, spatial aesthetics, social, cultural, technical and marketing issues, integration into existing urban system morphology of today?s urban development in the Gulf, common patterns and forms of urban development within the Gulf urban environments, investigation of magnets and forces that induce the interest in the development of urban spaces. Topics include: impact on suburb cities, urban master plans, spatial composition and infrastructures, real estate development, urban growth control and management, role of critical analysis, assessment, valuing through community participation feedback in creating appropriate development, case studies
A review of history, best practices, trends, and forms of residential development, residential development infrastructure, cost, privacy, security, identity, and movement and open spaces. Gated and mega residential communities with emphasis on the region. Relation to city's zoning regulation, bylaws, infrastructure and population growth.
This course introduces a systematic process for predicting, and evaluating the significant environmental consequences of a proposed action or undertaking in the built environment. It provides the students with an understanding of the guidelines for EIA; ecologically sustainable built environment; impact evaluation in terms of environmental criteria; procedures, techniques and future directions. Mitigation measures identified to avoid, minimize or remedy adverse impacts on the environment.
Variable content course addressing in depth analysis of selected topics pertaining to the architectural engineering graduate research with a specific theme indicated by course title listed in program semester course offering Schedule. Course can be taken only once.
Building and zoning codes, contract documents, professional practice, approach to the implementation of codes during the preliminary design stage. Introduction to British and US codes and emphasis on UAE local Codes. Design using local building codes, construction law and project feasibility Discussion of the legal aspects of architectural practice.
Architectural specifications for construction work using the construction industry norms, preparation of instructions to bidders, Project specific terms and conditions, principles and methods of preparing construction documents according to industry standards. Specification writing techniques, standard specification formats and indexing and automated systems, client agreements, tendering and bidding, instructions to the contract and contract administration, critical role of specification writing in the design and construction process is emphasized, a course project from conceptual analysis to a finished project specification document.
Principles of architectural tenders and industry standards, stages and process of tendering and bidding, An insight into the principles behind efficient architectural bids, guidelines and tenders? writing for building construction works, instructions to bidders, general conditions and projects specifications, Case studies examples illustrating bidding and tendering from the conceptual stage to the finished document.
Integrating architectural design of a medium size project to other building systems and technology using appropriate computer modeling and simulation techniques, this integration includes structural systems, construction systems and materials, indoor air climatization and purification, electrical systems, lighting, acoustics, fire safety, security, water supply, drainage and waste disposal. Integrated design is tested for conformity to industry standards, building codes and regulations.
Advanced structural system appropriate to innovative design concept, form, shape and materials, Emphasis on non-traditional and composite building structural systems utilizing steel, pre-stressed concrete and precast panels, and other composite materials, materials interfaces and connections detailing considerations. Construction technological development dealing with the design of building mechanical and electrical systems, structural systems, building envelope design, roofing systems and glazing systems; advanced building construction composite materials, processes, and assemblies
Effect of architectural and structural system design on total building costs; principle and practice of cost planning, phasing, estimating cost of a building at the design stages, theory and techniques of life cycle costing, cash flow; liquidity, and financial stability; balance adjustments; best practice and financial prequalification in construction and building. Case studies and examples.
Advances in building design details are reviewed and assessed in terms of function, constructability, durability, sustainability and aesthetics. This course addresses predictive diagnostic analysis to predict whether building details design are functional and dysfunctional. Assemblies' details covers a wide range of challenges with interfacing examples on foundations, floors, walls, roofs, doors and windows. Details design exercises on beams, columns, trusses, space frames, slabs, arches, vaults and domes using computational and graphical techniques
Variable content course addressing in depth analysis of selected topics pertaining to the architectural engineering graduate research with a specific theme indicated by course title listed in program semester course offering Schedule. Course can be taken only once.
Fundamentals of building acoustics, hearing mechanism, noise sources, acoustical materials and structures, transfer of sound, vibration, absorption and reverberation time, transmission loss, noise control criteria and regulation, passive control of noise, active control of noise, and vibration and noise control systems, building modern acoustical materials, latest techniques in noise control and sound regulation, passive and active control of noise, and control systems, urban noise sources and control, case studies and applications for public indoor spaces that require special architectural acoustics such as airports, theatres and sport arenas.
Eye and visual perception, terms, definitions, and lighting units, photometry, colorimetry, brightness, luminance and illumination, artificial lighting, illumination generation, measurements and control of light. Fundamentals of daylighting, daylight availability, design skies, modeling and simulation techniques of daylight. Daylight measurements, Integration of passive heating and daylight, Fenestration design, skylights and atria daylight design, computer applications in daylighting, Impact of daylight on building indoor lively quality, daylight analysis, measurements, energy benefits and integration with passive and active heating and cooling systems. Design of lighting systems and daylight integration in buildings.
The interrelationship between thermal and architectural design of buildings with respect to planning, design, operation and energy management. estimating building energy demands and predicting energy performance. Effect of climate on human comfort. Overall energy performance and climate-responsiveness as a design strategy for energy conservation, building envelope components' design for minimal energy consumption, Operation dynamics, and impact of building sub-systems integration on building's overall thermal efficiency. Energy operation, auditing and management, new directions in building energy conservation.
Air and water aspects of buildings and their environmental impact. Indoor air quality, ventilation, air recirculation, and pressurization. Water supply, pressurization, filtration. Waste disposal, plumbing network and drainage systems. Fire protection criteria and systems, with reference to building codes and standards. Air climatization loads and efficiency , Operation of energy efficient air conditioning systems that are weather responsive.
Building science experimental exercises pertaining to testing, analyzing and assessing building materials and components, topics cover thermal, acoustical, and luminous characteristics of building materials and building interiors. Exercises on instrumentation, measurement and logging techniques for environmental data gathering inside labs and outside in the field. Typical exercises introduce students to the measurement of temperature, air flow and humidity as well as lighting flux, intensity, distribution, acoustical measurements, heat flux meters, flow meters, energy meters, infrared thermo-graphic camera.
Fenestration thermal, acoustical and optical properties, monolithic, laminated, insulating glazing, thermal resistance and U-factor, daylight utilization potential and visual performance, fenestration components and systems, single and multi-pane window systems, window frames, glass types, low-E, and tinted low-E glazing. Windows, glass doors, curtain wall, and skylights design. Performance analysis of transparent thermal envelope design, thermal and optical simulations of fenestration systems and effect of overhangs. Analysis of the annual energy usage and peak demand as a function of glazing type, size, and control strategy, measurements of the net heat flow through glazing, infrared thermograph, fenestration energy ratings, electrochromic, gas filled, vacuum glazing and fenestration recent advances.
Natural, mechanical and hybrid ventilation, climatic influences, uncontrolled air infiltration and exfiltration, building air tightness, airflow behavior around buildings, occupancy patterns and pollutant emission characteristics as determinants of ventilation requirements and demands, ventilation strategies, design, analysis and performance of ventilation systems for comfort and cooling, optimal ventilation utilization and air energy recovery for achieving energy-efficient building design, analytical methods, Ventilation Performance Indicators, Standards and Regulations and key selected topics in building ventilation, relevant to all building types computing tools.
Variable content course addressing in depth analysis of selected topics pertaining to the architectural engineering graduate research with a specific theme indicated by course title listed in program semester course offering Schedule. Course can be taken only once.
Design of built form with emphasis on research based issues related to architectural design and planning. This includes theoretical issues, in urban planning, urban design, project management, building technology, and architectural issues such as meaning, principles of order; alternative means of enclosing architectural space; synthesis of space, light, structure, materials, and environmental control systems. Design as a form of inquiry integrating all knowledge gained by student inside and outside the design disciplines.
Students are responsible for developing independently a satisfactory thesis proposal which provides an in-depth examination of a research study of a topic in the student's area of concentration leading to the thesis development
This will require students to discuss and critique original and recent journal articles, describing a major scientific advancement in a research area, which will be chosen in consultation with the student’s supervisor. Students are required to make presentations, submit reports and participate in discussions.
To be designed to the specific interest of the exiting PhD students with emphasis on new frontiers in Architectural Engineering
To be designed to the specific interest of the exiting PhD students with emphasis on new frontiers in Architectural Engineering
Passing the comprehensive exam is required to enter into PhD candidacy. The exam evaluates the research ability of potential PhD candidates.
PhD candidate defend research plans in front of supervisory committee.
Open to students who have successfully completed the comprehensive exam. PhD student conducts original research under the direction of a supervisory committee. Credits are determined in consultation with the dissertation supervisor. Prerequisite: Student must pass ARCH 810
Two part exam, open and close, to defend the results of PhD research work
لايوجد محتوى عربي لهذه الصفحة
يوجد مشكلة في الصفحة التي تحاول الوصول إليها